L10a136

From Knot Atlas
Jump to: navigation, search

L10a135.gif

L10a135

L10a137.gif

L10a137

Contents

L10a136.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a136 at Knotilus!


Link Presentations

[edit Notes on L10a136's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X20,7,11,8 X8,19,9,20 X18,12,19,11 X16,13,17,14 X14,6,15,5 X10,16,5,15 X2,9,3,10 X4,18,1,17
Gauss code {1, -9, 2, -10}, {7, -1, 3, -4, 9, -8}, {5, -2, 6, -7, 8, -6, 10, -5, 4, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10a136 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(3) t(2)-t(2)-2 t(3)+1) (t(3) t(2)-2 t(2)-t(3)+1)}{\sqrt{t(1)} t(2) t(3)} (db)
Jones polynomial -q^5- q^{-5} +4 q^4+4 q^{-4} -8 q^3-8 q^{-3} +13 q^2+13 q^{-2} -15 q-15 q^{-1} +18 (db)
Signature 0 (db)
HOMFLY-PT polynomial -a^4 z^2-z^2 a^{-4} +2 a^2 z^4+2 z^4 a^{-2} +2 a^2 z^2+2 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +a^2+ a^{-2} -z^6-2 z^4-3 z^2-2 z^{-2} -2 (db)
Kauffman polynomial 2 a z^9+2 z^9 a^{-1} +6 a^2 z^8+6 z^8 a^{-2} +12 z^8+7 a^3 z^7+13 a z^7+13 z^7 a^{-1} +7 z^7 a^{-3} +4 a^4 z^6-3 a^2 z^6-3 z^6 a^{-2} +4 z^6 a^{-4} -14 z^6+a^5 z^5-11 a^3 z^5-28 a z^5-28 z^5 a^{-1} -11 z^5 a^{-3} +z^5 a^{-5} -6 a^4 z^4-7 a^2 z^4-7 z^4 a^{-2} -6 z^4 a^{-4} -2 z^4-a^5 z^3+5 a^3 z^3+12 a z^3+12 z^3 a^{-1} +5 z^3 a^{-3} -z^3 a^{-5} +3 a^4 z^2+5 a^2 z^2+5 z^2 a^{-2} +3 z^2 a^{-4} +4 z^2+2 a z+2 z a^{-1} -2 a^2-2 a^{-2} -3-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-1012345χ
11          1-1
9         3 3
7        51 -4
5       83  5
3      86   -2
1     107    3
-1    710     3
-3   68      -2
-5  38       5
-7 15        -4
-9 3         3
-111          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a135.gif

L10a135

L10a137.gif

L10a137