L10a143

From Knot Atlas
Jump to: navigation, search

L10a142.gif

L10a142

L10a144.gif

L10a144

Contents

L10a143.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a143 at Knotilus!


Link Presentations

[edit Notes on L10a143's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X12,15,5,16 X18,9,19,10 X16,7,17,8 X20,11,13,12 X10,17,11,18 X8,19,9,20 X2536 X4,13,1,14
Gauss code {1, -9, 2, -10}, {9, -1, 5, -8, 4, -7, 6, -3}, {10, -2, 3, -5, 7, -4, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a143 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^3 w+2 u v^2 w^2-3 u v^2 w+u v^2+u v w^3-3 u v w^2+3 u v w-u v+u w^2-u w+v^3 w^2-v^3 w+v^2 w^3-3 v^2 w^2+3 v^2 w-v^2-v w^3+3 v w^2-2 v w-w^2}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial  q^{-2} -3 q^{-3} +7 q^{-4} -9 q^{-5} +11 q^{-6} -11 q^{-7} +11 q^{-8} -7 q^{-9} +5 q^{-10} -2 q^{-11} + q^{-12} (db)
Signature -4 (db)
HOMFLY-PT polynomial a^{12} z^{-2} +a^{12}-3 a^{10} z^2-2 a^{10} z^{-2} -5 a^{10}+2 a^8 z^4+3 a^8 z^2+a^8 z^{-2} +2 a^8+3 a^6 z^4+6 a^6 z^2+2 a^6+a^4 z^4+a^4 z^2 (db)
Kauffman polynomial a^{14} z^6-4 a^{14} z^4+5 a^{14} z^2-2 a^{14}+2 a^{13} z^7-6 a^{13} z^5+4 a^{13} z^3+a^{13} z+2 a^{12} z^8-3 a^{12} z^6-2 a^{12} z^4+a^{12} z^2-a^{12} z^{-2} +3 a^{12}+a^{11} z^9+3 a^{11} z^7-12 a^{11} z^5+12 a^{11} z^3-8 a^{11} z+2 a^{11} z^{-1} +6 a^{10} z^8-13 a^{10} z^6+14 a^{10} z^4-16 a^{10} z^2-2 a^{10} z^{-2} +9 a^{10}+a^9 z^9+7 a^9 z^7-16 a^9 z^5+12 a^9 z^3-8 a^9 z+2 a^9 z^{-1} +4 a^8 z^8-3 a^8 z^6+2 a^8 z^4-4 a^8 z^2-a^8 z^{-2} +3 a^8+6 a^7 z^7-7 a^7 z^5+2 a^7 z^3+a^7 z+6 a^6 z^6-9 a^6 z^4+7 a^6 z^2-2 a^6+3 a^5 z^5-2 a^5 z^3+a^4 z^4-a^4 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-3          11
-5         31-2
-7        4  4
-9       53  -2
-11      64   2
-13     66    0
-15    55     0
-17   26      4
-19  35       -2
-21 14        3
-23 1         -1
-251          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3
r=-10 {\mathbb Z}
r=-9 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=-7 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a142.gif

L10a142

L10a144.gif

L10a144