L10a144

From Knot Atlas
Jump to: navigation, search

L10a143.gif

L10a143

L10a145.gif

L10a145

Contents

L10a144.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a144 at Knotilus!


Link Presentations

[edit Notes on L10a144's Link Presentations]

Planar diagram presentation X6172 X14,4,15,3 X8,18,9,17 X16,8,17,7 X18,10,19,9 X10,14,11,13 X20,12,13,11 X12,20,5,19 X2536 X4,16,1,15
Gauss code {1, -9, 2, -10}, {9, -1, 4, -3, 5, -6, 7, -8}, {6, -2, 10, -4, 3, -5, 8, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a144 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(3)^2 t(2)^3-t(3)^2 t(2)^3+t(3) t(2)^3+t(1) t(3)^3 t(2)^2-t(3)^3 t(2)^2-2 t(1) t(3)^2 t(2)^2+2 t(3)^2 t(2)^2+t(1) t(3) t(2)^2-2 t(3) t(2)^2+t(2)^2-t(1) t(3)^3 t(2)+2 t(1) t(3)^2 t(2)-t(3)^2 t(2)+t(1) t(2)-2 t(1) t(3) t(2)+2 t(3) t(2)-t(2)-t(1) t(3)^2+t(1) t(3)-t(3)}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}} (db)
Jones polynomial q^{10}-2 q^9+4 q^8-6 q^7+9 q^6-8 q^5+8 q^4-6 q^3+5 q^2-2 q+1 (db)
Signature 4 (db)
HOMFLY-PT polynomial -z^6 a^{-4} -z^6 a^{-6} +z^4 a^{-2} -3 z^4 a^{-4} -4 z^4 a^{-6} +z^4 a^{-8} +3 z^2 a^{-2} -z^2 a^{-4} -6 z^2 a^{-6} +3 z^2 a^{-8} +2 a^{-2} + a^{-4} -5 a^{-6} +2 a^{-8} + a^{-4} z^{-2} -2 a^{-6} z^{-2} + a^{-8} z^{-2} (db)
Kauffman polynomial z^9 a^{-5} +z^9 a^{-7} +2 z^8 a^{-4} +5 z^8 a^{-6} +3 z^8 a^{-8} +2 z^7 a^{-3} +z^7 a^{-5} +2 z^7 a^{-7} +3 z^7 a^{-9} +z^6 a^{-2} -4 z^6 a^{-4} -16 z^6 a^{-6} -8 z^6 a^{-8} +3 z^6 a^{-10} -6 z^5 a^{-3} -9 z^5 a^{-5} -10 z^5 a^{-7} -5 z^5 a^{-9} +2 z^5 a^{-11} -4 z^4 a^{-2} -z^4 a^{-4} +22 z^4 a^{-6} +12 z^4 a^{-8} -6 z^4 a^{-10} +z^4 a^{-12} +3 z^3 a^{-3} +10 z^3 a^{-5} +14 z^3 a^{-7} +4 z^3 a^{-9} -3 z^3 a^{-11} +5 z^2 a^{-2} -z^2 a^{-4} -19 z^2 a^{-6} -5 z^2 a^{-8} +6 z^2 a^{-10} -2 z^2 a^{-12} +z a^{-3} -8 z a^{-5} -8 z a^{-7} +z a^{-9} -2 a^{-2} +3 a^{-4} +9 a^{-6} +3 a^{-8} -2 a^{-10} +2 a^{-5} z^{-1} +2 a^{-7} z^{-1} - a^{-4} z^{-2} -2 a^{-6} z^{-2} - a^{-8} z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-1012345678χ
21          11
19         21-1
17        2  2
15       42  -2
13      52   3
11     45    1
9    44     0
7   24      2
5  34       -1
3 14        3
1 1         -1
-11          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=8 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a143.gif

L10a143

L10a145.gif

L10a145