L10a160

From Knot Atlas
Jump to: navigation, search

L10a159.gif

L10a159

L10a161.gif

L10a161

Contents

L10a160.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a160 at Knotilus!


Link Presentations

[edit Notes on L10a160's Link Presentations]

Planar diagram presentation X8192 X14,4,15,3 X20,12,13,11 X18,10,19,9 X10,14,11,13 X12,20,7,19 X16,6,17,5 X2738 X4,16,5,15 X6,18,1,17
Gauss code {1, -8, 2, -9, 7, -10}, {8, -1, 4, -5, 3, -6}, {5, -2, 9, -7, 10, -4, 6, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a160 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v^2 w^2+u^2 v w^3-2 u^2 v w^2+u^2 v w-u^2 w^3+u^2 w^2-u v^2 w^2+u v^2 w-u v w^3+2 u v w^2-2 u v w+u v-u w^2+u w-v^2 w+v^2-v w^2+2 v w-v-w}{u v w^{3/2}} (db)
Jones polynomial q^{10}-2 q^9+4 q^8-6 q^7+8 q^6-7 q^5+8 q^4-5 q^3+4 q^2-2 q+1 (db)
Signature 4 (db)
HOMFLY-PT polynomial -z^6 a^{-4} -z^6 a^{-6} +z^4 a^{-2} -3 z^4 a^{-4} -4 z^4 a^{-6} +z^4 a^{-8} +3 z^2 a^{-2} -6 z^2 a^{-6} +3 z^2 a^{-8} + a^{-2} +3 a^{-4} -6 a^{-6} +2 a^{-8} + a^{-4} z^{-2} -2 a^{-6} z^{-2} + a^{-8} z^{-2} (db)
Kauffman polynomial z^4 a^{-12} -2 z^2 a^{-12} +2 z^5 a^{-11} -3 z^3 a^{-11} +3 z^6 a^{-10} -6 z^4 a^{-10} +5 z^2 a^{-10} - a^{-10} +3 z^7 a^{-9} -6 z^5 a^{-9} +6 z^3 a^{-9} +3 z^8 a^{-8} -10 z^6 a^{-8} +19 z^4 a^{-8} -14 z^2 a^{-8} - a^{-8} z^{-2} +5 a^{-8} +z^9 a^{-7} +z^7 a^{-7} -9 z^5 a^{-7} +16 z^3 a^{-7} -9 z a^{-7} +2 a^{-7} z^{-1} +5 z^8 a^{-6} -20 z^6 a^{-6} +35 z^4 a^{-6} -31 z^2 a^{-6} -2 a^{-6} z^{-2} +11 a^{-6} +z^9 a^{-5} -8 z^5 a^{-5} +12 z^3 a^{-5} -9 z a^{-5} +2 a^{-5} z^{-1} +2 z^8 a^{-4} -6 z^6 a^{-4} +5 z^4 a^{-4} -6 z^2 a^{-4} - a^{-4} z^{-2} +5 a^{-4} +2 z^7 a^{-3} -7 z^5 a^{-3} +5 z^3 a^{-3} +z^6 a^{-2} -4 z^4 a^{-2} +4 z^2 a^{-2} - a^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-1012345678χ
21          11
19         21-1
17        2  2
15       42  -2
13      42   2
11     34    1
9    54     1
7   25      3
5  23       -1
3 13        2
1 1         -1
-11          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=8 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a159.gif

L10a159

L10a161.gif

L10a161