L10a164

From Knot Atlas
Jump to: navigation, search

L10a163.gif

L10a163

L10a165.gif

L10a165

Contents

L10a164.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a164 at Knotilus!


Link Presentations

[edit Notes on L10a164's Link Presentations]

Planar diagram presentation X8192 X14,3,15,4 X12,15,7,16 X10,19,11,20 X16,9,17,10 X20,11,13,12 X18,5,19,6 X2738 X4,13,5,14 X6,17,1,18
Gauss code {1, -8, 2, -9, 7, -10}, {8, -1, 5, -4, 6, -3}, {9, -2, 3, -5, 10, -7, 4, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a164 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(2)^2 t(3)^3+t(1) t(2) t(3)^3-t(2) t(3)^3-t(1)^2 t(3)^2+2 t(1) t(2)^2 t(3)^2-2 t(2)^2 t(3)^2+2 t(1) t(3)^2+2 t(1)^2 t(2) t(3)^2-4 t(1) t(2) t(3)^2+3 t(2) t(3)^2-t(3)^2+2 t(1)^2 t(3)+t(1)^2 t(2)^2 t(3)-2 t(1) t(2)^2 t(3)+t(2)^2 t(3)-2 t(1) t(3)-3 t(1)^2 t(2) t(3)+4 t(1) t(2) t(3)-2 t(2) t(3)-t(1)^2+t(1)^2 t(2)-t(1) t(2)}{t(1) t(2) t(3)^{3/2}} (db)
Jones polynomial  q^{-2} -3 q^{-3} +7 q^{-4} -10 q^{-5} +13 q^{-6} -13 q^{-7} +13 q^{-8} -9 q^{-9} +7 q^{-10} -3 q^{-11} + q^{-12} (db)
Signature -4 (db)
HOMFLY-PT polynomial a^{12} z^{-2} +a^{12}-4 a^{10} z^2-2 a^{10} z^{-2} -6 a^{10}+3 a^8 z^4+6 a^8 z^2+a^8 z^{-2} +4 a^8+3 a^6 z^4+5 a^6 z^2+a^6+a^4 z^4+a^4 z^2 (db)
Kauffman polynomial z^6 a^{14}-3 z^4 a^{14}+3 z^2 a^{14}-a^{14}+3 z^7 a^{13}-8 z^5 a^{13}+5 z^3 a^{13}+4 z^8 a^{12}-9 z^6 a^{12}+4 z^4 a^{12}-3 z^2 a^{12}-a^{12} z^{-2} +5 a^{12}+2 z^9 a^{11}+3 z^7 a^{11}-18 z^5 a^{11}+17 z^3 a^{11}-9 z a^{11}+2 a^{11} z^{-1} +10 z^8 a^{10}-25 z^6 a^{10}+26 z^4 a^{10}-23 z^2 a^{10}-2 a^{10} z^{-2} +11 a^{10}+2 z^9 a^9+7 z^7 a^9-22 z^5 a^9+19 z^3 a^9-9 z a^9+2 a^9 z^{-1} +6 z^8 a^8-9 z^6 a^8+10 z^4 a^8-10 z^2 a^8-a^8 z^{-2} +5 a^8+7 z^7 a^7-9 z^5 a^7+5 z^3 a^7+6 z^6 a^6-8 z^4 a^6+6 z^2 a^6-a^6+3 z^5 a^5-2 z^3 a^5+z^4 a^4-z^2 a^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-3          11
-5         31-2
-7        4  4
-9       63  -3
-11      74   3
-13     66    0
-15    77     0
-17   48      4
-19  35       -2
-21 15        4
-23 2         -2
-251          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3
r=-10 {\mathbb Z}
r=-9 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-7 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-6 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a163.gif

L10a163

L10a165.gif

L10a165