From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a165 at Knotilus!

Link Presentations

[edit Notes on L10a165's Link Presentations]

Planar diagram presentation X6172 X2536 X18,11,19,12 X10,3,11,4 X4,9,1,10 X14,7,15,8 X8,13,5,14 X20,16,13,15 X16,20,17,19 X12,17,9,18
Gauss code {1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -10}, {7, -6, 8, -9, 10, -3, 9, -8}
A Braid Representative
A Morse Link Presentation L10a165 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v w x-2 u v w-2 u v x+2 u v-2 u w x+2 u w+3 u x-2 u-2 v w x+3 v w+2 v x-2 v+2 w x-2 w-2 x+1}{\sqrt{u} \sqrt{v} \sqrt{w} \sqrt{x}} (db)
Jones polynomial -\sqrt{q}+\frac{4}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{8}{q^{5/2}}-\frac{11}{q^{7/2}}+\frac{10}{q^{9/2}}-\frac{11}{q^{11/2}}+\frac{5}{q^{13/2}}-\frac{5}{q^{15/2}}+\frac{1}{q^{17/2}}-\frac{1}{q^{19/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^{11} z^{-3} -4 a^9 z^{-1} -3 a^9 z^{-3} +6 z a^7+8 a^7 z^{-1} +3 a^7 z^{-3} -4 z^3 a^5-6 z a^5-4 a^5 z^{-1} -a^5 z^{-3} +z^5 a^3+z^3 a^3-z^3 a (db)
Kauffman polynomial -z^5 a^{11}+4 z^3 a^{11}-6 z a^{11}+4 a^{11} z^{-1} -a^{11} z^{-3} -z^6 a^{10}+6 z^2 a^{10}+3 a^{10} z^{-2} -8 a^{10}-z^7 a^9-3 z^5 a^9+12 z^3 a^9-14 z a^9+9 a^9 z^{-1} -3 a^9 z^{-3} -z^8 a^8-2 z^6 a^8+12 z^2 a^8+6 a^8 z^{-2} -15 a^8-z^9 a^7-6 z^5 a^7+13 z^3 a^7-14 z a^7+9 a^7 z^{-1} -3 a^7 z^{-3} -5 z^8 a^6+9 z^6 a^6-9 z^4 a^6+6 z^2 a^6+3 a^6 z^{-2} -8 a^6-z^9 a^5-5 z^7 a^5+10 z^5 a^5-z^3 a^5-6 z a^5+4 a^5 z^{-1} -a^5 z^{-3} -4 z^8 a^4+6 z^6 a^4-2 z^4 a^4-6 z^7 a^3+13 z^5 a^3-5 z^3 a^3-4 z^6 a^2+7 z^4 a^2-z^5 a+z^3 a (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
2          11
0         3 -3
-2        41 3
-4       54  -1
-6      63   3
-8     45    1
-10    76     1
-12   410      6
-14  11       0
-16  4        4
-1811         0
-201          1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-8 {\mathbb Z} {\mathbb Z}
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{10}\oplus{\mathbb Z}_2 {\mathbb Z}^{7}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.