From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a166 at Knotilus!

Link Presentations

[edit Notes on L10a166's Link Presentations]

Planar diagram presentation X6172 X2536 X20,13,15,14 X10,3,11,4 X4,9,1,10 X16,7,17,8 X8,15,5,16 X18,11,19,12 X12,19,13,20 X14,17,9,18
Gauss code {1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 8, -9, 3, -10}, {7, -6, 10, -8, 9, -3}
A Braid Representative
A Morse Link Presentation L10a166 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-t(1) t(4)^2 t(3)^2-t(2) t(4)^2 t(3)^2+t(4)^2 t(3)^2+t(1) t(4) t(3)^2-t(1) t(2) t(4) t(3)^2+2 t(2) t(4) t(3)^2-t(4) t(3)^2+2 t(1) t(4)^2 t(3)-t(1) t(2) t(4)^2 t(3)+t(2) t(4)^2 t(3)-t(4)^2 t(3)+t(1) t(3)-t(1) t(2) t(3)+2 t(2) t(3)-3 t(1) t(4) t(3)+2 t(1) t(2) t(4) t(3)-3 t(2) t(4) t(3)+2 t(4) t(3)-t(3)-t(1)+t(1) t(2)-t(2)+2 t(1) t(4)-t(1) t(2) t(4)+t(2) t(4)-t(4)}{\sqrt{t(1)} \sqrt{t(2)} t(3) t(4)} (db)
Jones polynomial -\frac{7}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}-\frac{1}{q^{25/2}}+\frac{2}{q^{23/2}}-\frac{6}{q^{21/2}}+\frac{8}{q^{19/2}}-\frac{12}{q^{17/2}}+\frac{11}{q^{15/2}}-\frac{13}{q^{13/2}}+\frac{8}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{13} z^{-1} +a^{13} z^{-3} -4 z a^{11}-8 a^{11} z^{-1} -3 a^{11} z^{-3} +6 z^3 a^9+17 z a^9+13 a^9 z^{-1} +3 a^9 z^{-3} -3 z^5 a^7-11 z^3 a^7-13 z a^7-6 a^7 z^{-1} -a^7 z^{-3} -z^5 a^5-2 z^3 a^5 (db)
Kauffman polynomial -z^5 a^{15}+3 z^3 a^{15}-3 z a^{15}+a^{15} z^{-1} -2 z^6 a^{14}+3 z^4 a^{14}-a^{14}-3 z^7 a^{13}+4 z^5 a^{13}-2 z^3 a^{13}+3 z a^{13}-3 a^{13} z^{-1} +a^{13} z^{-3} -2 z^8 a^{12}-4 z^6 a^{12}+15 z^4 a^{12}-16 z^2 a^{12}-3 a^{12} z^{-2} +11 a^{12}-z^9 a^{11}-6 z^7 a^{11}+15 z^5 a^{11}-20 z^3 a^{11}+21 z a^{11}-12 a^{11} z^{-1} +3 a^{11} z^{-3} -6 z^8 a^{10}+5 z^6 a^{10}+14 z^4 a^{10}-33 z^2 a^{10}-6 a^{10} z^{-2} +24 a^{10}-z^9 a^9-9 z^7 a^9+28 z^5 a^9-37 z^3 a^9+28 z a^9-14 a^9 z^{-1} +3 a^9 z^{-3} -4 z^8 a^8+4 z^6 a^8+7 z^4 a^8-17 z^2 a^8-3 a^8 z^{-2} +13 a^8-6 z^7 a^7+17 z^5 a^7-20 z^3 a^7+13 z a^7-6 a^7 z^{-1} +a^7 z^{-3} -3 z^6 a^6+5 z^4 a^6-z^5 a^5+2 z^3 a^5 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
-4          11
-6         31-2
-8        4  4
-10       43  -1
-12      94   5
-14     57    2
-16    76     1
-18   48      4
-20  24       -2
-22  4        4
-2412         -1
-261          1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-10 {\mathbb Z} {\mathbb Z}
r=-9 {\mathbb Z}^{2}
r=-8 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-7 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-6 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{7}
r=-5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{9}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.