L10a167

From Knot Atlas
Jump to: navigation, search

L10a166.gif

L10a166

L10a168.gif

L10a168

Contents

L10a167.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a167 at Knotilus!


Link Presentations

[edit Notes on L10a167's Link Presentations]

Planar diagram presentation X6172 X2536 X18,12,19,11 X10,3,11,4 X4,9,1,10 X8,18,5,17 X16,8,17,7 X20,14,15,13 X14,16,9,15 X12,20,13,19
Gauss code {1, -2, 4, -5}, {2, -1, 7, -6}, {5, -4, 3, -10, 8, -9}, {9, -7, 6, -3, 10, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a167 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-t(1) t(4)^2 t(3)^2+t(1) t(2) t(4)^2 t(3)^2-2 t(2) t(4)^2 t(3)^2+t(4)^2 t(3)^2+t(1) t(4) t(3)^2+t(2) t(4) t(3)^2-t(4) t(3)^2+t(1) t(4)^2 t(3)-t(1) t(2) t(4)^2 t(3)+t(2) t(4)^2 t(3)+t(1) t(3)+t(2) t(3)-2 t(1) t(4) t(3)+t(1) t(2) t(4) t(3)-2 t(2) t(4) t(3)+t(4) t(3)-t(3)-2 t(1)+t(1) t(2)-t(2)+t(1) t(4)-t(1) t(2) t(4)+t(2) t(4)+1}{\sqrt{t(1)} \sqrt{t(2)} t(3) t(4)} (db)
Jones polynomial 7 q^{9/2}-10 q^{7/2}+8 q^{5/2}-\frac{1}{q^{5/2}}-9 q^{3/2}+\frac{1}{q^{3/2}}-q^{15/2}+3 q^{13/2}-6 q^{11/2}+5 \sqrt{q}-\frac{5}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^7 a^{-3} -2 z^5 a^{-1} +5 z^5 a^{-3} -z^5 a^{-5} +a z^3-9 z^3 a^{-1} +10 z^3 a^{-3} -3 z^3 a^{-5} +4 a z-14 z a^{-1} +13 z a^{-3} -3 z a^{-5} +4 a z^{-1} -11 a^{-1} z^{-1} +10 a^{-3} z^{-1} -3 a^{-5} z^{-1} +a z^{-3} -3 a^{-1} z^{-3} +3 a^{-3} z^{-3} - a^{-5} z^{-3} (db)
Kauffman polynomial -z^9 a^{-1} -z^9 a^{-3} -5 z^8 a^{-2} -4 z^8 a^{-4} -z^8-a z^7-6 z^7 a^{-3} -7 z^7 a^{-5} +13 z^6 a^{-2} +4 z^6 a^{-4} -7 z^6 a^{-6} +2 z^6+6 a z^5+14 z^5 a^{-1} +27 z^5 a^{-3} +13 z^5 a^{-5} -6 z^5 a^{-7} +6 z^4 a^{-2} +11 z^4 a^{-4} +8 z^4 a^{-6} -3 z^4 a^{-8} +6 z^4-13 a z^3-30 z^3 a^{-1} -30 z^3 a^{-3} -6 z^3 a^{-5} +6 z^3 a^{-7} -z^3 a^{-9} -33 z^2 a^{-2} -16 z^2 a^{-4} -17 z^2+13 a z+28 z a^{-1} +21 z a^{-3} +3 z a^{-5} -3 z a^{-7} +24 a^{-2} +11 a^{-4} - a^{-6} +13-6 a z^{-1} -14 a^{-1} z^{-1} -12 a^{-3} z^{-1} -3 a^{-5} z^{-1} + a^{-7} z^{-1} -6 a^{-2} z^{-2} -3 a^{-4} z^{-2} -3 z^{-2} +a z^{-3} +3 a^{-1} z^{-3} +3 a^{-3} z^{-3} + a^{-5} z^{-3} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-10123456χ
16          11
14         31-2
12        3  3
10       43  -1
8      63   3
6     57    2
4    43     1
2   48      4
0  11       0
-2  4        4
-411         0
-61          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2 {\mathbb Z}^{4}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a166.gif

L10a166

L10a168.gif

L10a168