L10a95

From Knot Atlas
Jump to: navigation, search

L10a94.gif

L10a94

L10a96.gif

L10a96

Contents

L10a95.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a95 at Knotilus!


Link Presentations

[edit Notes on L10a95's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,3,13,4 X14,6,15,5 X16,13,17,14 X18,8,19,7 X20,17,9,18 X4,16,5,15 X6,20,7,19 X2,9,3,10 X8,11,1,12
Gauss code {1, -9, 2, -7, 3, -8, 5, -10}, {9, -1, 10, -2, 4, -3, 7, -4, 6, -5, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L10a95 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) (t(1)+t(2)-1) (t(2) t(1)-t(1)-t(2))}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial -\frac{5}{q^{9/2}}-q^{7/2}+\frac{9}{q^{7/2}}+3 q^{5/2}-\frac{12}{q^{5/2}}-6 q^{3/2}+\frac{11}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{3}{q^{11/2}}+9 \sqrt{q}-\frac{12}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^3+a^5 z-a^3 z^5-2 a^3 z^3-3 a^3 z-z a^{-3} -a z^5+2 z^3 a^{-1} +2 a z+a z^{-1} +z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial a^7 z^5-2 a^7 z^3+3 a^6 z^6-7 a^6 z^4+4 a^6 z^2+4 a^5 z^7-8 a^5 z^5+6 a^5 z^3-3 a^5 z+3 a^4 z^8-a^4 z^6-7 a^4 z^4+8 a^4 z^2+a^3 z^9+7 a^3 z^7-19 a^3 z^5+z^5 a^{-3} +21 a^3 z^3-2 z^3 a^{-3} -10 a^3 z+z a^{-3} +6 a^2 z^8-7 a^2 z^6+3 z^6 a^{-2} -a^2 z^4-6 z^4 a^{-2} +5 a^2 z^2+3 z^2 a^{-2} +a z^9+7 a z^7+4 z^7 a^{-1} -17 a z^5-6 z^5 a^{-1} +17 a z^3+2 z^3 a^{-1} -10 a z-2 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +3 z^8-7 z^4+4 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-101234χ
8          11
6         2 -2
4        41 3
2       52  -3
0      74   3
-2     67    1
-4    65     1
-6   36      3
-8  26       -4
-10 13        2
-12 2         -2
-141          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a94.gif

L10a94

L10a96.gif

L10a96