L10n1

From Knot Atlas
Jump to: navigation, search

L10a174.gif

L10a174

L10n2.gif

L10n2

Contents

L10n1.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n1 at Knotilus!


Link Presentations

[edit Notes on L10n1's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X3849 X11,19,12,18 X17,5,18,20 X19,13,20,12 X9,16,10,17 X13,2,14,3
Gauss code {1, 10, -5, -3}, {-4, -1, 2, 5, -9, 4, -6, 8, -10, -2, 3, 9, -7, 6, -8, 7}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation L10n1 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-u v^5+2 u v^4-2 u v^3-2 v^2+2 v-1}{\sqrt{u} v^{5/2}} (db)
Jones polynomial \frac{2}{q^{9/2}}-\frac{4}{q^{7/2}}+\frac{3}{q^{5/2}}+q^{3/2}-\frac{3}{q^{3/2}}+\frac{1}{q^{13/2}}-\frac{2}{q^{11/2}}-2 \sqrt{q}+\frac{2}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -z a^7-a^7 z^{-1} +z^5 a^5+5 z^3 a^5+7 z a^5+4 a^5 z^{-1} -z^7 a^3-6 z^5 a^3-12 z^3 a^3-11 z a^3-4 a^3 z^{-1} +z^5 a+4 z^3 a+3 z a+a z^{-1} (db)
Kauffman polynomial a^8 z^2-a^8+2 a^7 z^3-3 a^7 z+a^7 z^{-1} +a^6 z^6-4 a^6 z^4+8 a^6 z^2-4 a^6+2 a^5 z^7-10 a^5 z^5+19 a^5 z^3-15 a^5 z+4 a^5 z^{-1} +a^4 z^8-2 a^4 z^6-6 a^4 z^4+15 a^4 z^2-7 a^4+4 a^3 z^7-19 a^3 z^5+27 a^3 z^3-16 a^3 z+4 a^3 z^{-1} +a^2 z^8-2 a^2 z^6-6 a^2 z^4+11 a^2 z^2-4 a^2+2 a z^7-9 a z^5+10 a z^3-4 a z+a z^{-1} +z^6-4 z^4+3 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123χ
4        1-1
2       1 1
0      11 0
-2    131  1
-4    22   0
-6   32    1
-8 112     2
-10 22      0
-12 1       1
-141        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2 i=0
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a174.gif

L10a174

L10n2.gif

L10n2