L10n2

From Knot Atlas
Jump to: navigation, search

L10n1.gif

L10n1

L10n3.gif

L10n3

Contents

L10n2.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n2 at Knotilus!


Link Presentations

[edit Notes on L10n2's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X15,1,16,4 X5,10,6,11 X3849 X11,19,12,18 X17,5,18,20 X19,13,20,12 X9,16,10,17 X2,14,3,13
Gauss code {1, -10, -5, 3}, {-4, -1, 2, 5, -9, 4, -6, 8, 10, -2, -3, 9, -7, 6, -8, 7}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation L10n2 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1)^3}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial \frac{1}{q^{9/2}}+2 q^{7/2}-\frac{2}{q^{7/2}}-4 q^{5/2}+\frac{3}{q^{5/2}}+4 q^{3/2}-\frac{5}{q^{3/2}}-6 \sqrt{q}+\frac{5}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -a^3 z^3-2 a^3 z+2 z a^{-3} -a^3 z^{-1} + a^{-3} z^{-1} +a z^5+4 a z^3-3 z^3 a^{-1} +7 a z-7 z a^{-1} +4 a z^{-1} -4 a^{-1} z^{-1} (db)
Kauffman polynomial a^4 z^6-4 a^4 z^4+4 a^4 z^2+3 z^2 a^{-4} -a^4- a^{-4} +2 a^3 z^7-8 a^3 z^5+z^5 a^{-3} +9 a^3 z^3+3 z^3 a^{-3} -4 a^3 z-4 z a^{-3} +a^3 z^{-1} + a^{-3} z^{-1} +a^2 z^8+3 z^6 a^{-2} -10 a^2 z^4-7 z^4 a^{-2} +12 a^2 z^2+10 z^2 a^{-2} -4 a^2-4 a^{-2} +5 a z^7+3 z^7 a^{-1} -18 a z^5-9 z^5 a^{-1} +21 a z^3+15 z^3 a^{-1} -13 a z-13 z a^{-1} +4 a z^{-1} +4 a^{-1} z^{-1} +z^8+2 z^6-13 z^4+15 z^2-7 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123χ
8        2-2
6       2 2
4      22 0
2     42  2
0    34   1
-2   22    0
-4  13     2
-6 12      -1
-8 1       1
-101        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n1.gif

L10n1

L10n3.gif

L10n3