L10n15

From Knot Atlas
Jump to: navigation, search

L10n14.gif

L10n14

L10n16.gif

L10n16

Contents

L10n15.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n15 at Knotilus!


Link Presentations

[edit Notes on L10n15's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X4,19,1,20 X14,10,15,9 X8493 X5,13,6,12 X13,5,14,20 X16,12,17,11 X10,16,11,15 X2,18,3,17
Gauss code {1, -10, 5, -3}, {-6, -1, 2, -5, 4, -9, 8, 6, -7, -4, 9, -8, 10, -2, 3, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L10n15 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) \left(v^4-v^3+v^2-v+1\right)}{\sqrt{u} v^{5/2}} (db)
Jones polynomial 6 q^{9/2}-7 q^{7/2}+6 q^{5/2}-7 q^{3/2}+\frac{1}{q^{3/2}}+2 q^{13/2}-4 q^{11/2}+4 \sqrt{q}-\frac{3}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z a^{-7} + a^{-7} z^{-1} -z^5 a^{-5} -4 z^3 a^{-5} -5 z a^{-5} -2 a^{-5} z^{-1} +z^7 a^{-3} +5 z^5 a^{-3} +8 z^3 a^{-3} +5 z a^{-3} -z^5 a^{-1} -3 z^3 a^{-1} -z a^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial 3 z^2 a^{-8} -2 a^{-8} +z^5 a^{-7} +3 z^3 a^{-7} -2 z a^{-7} + a^{-7} z^{-1} +4 z^6 a^{-6} -9 z^4 a^{-6} +12 z^2 a^{-6} -5 a^{-6} +5 z^7 a^{-5} -15 z^5 a^{-5} +18 z^3 a^{-5} -9 z a^{-5} +2 a^{-5} z^{-1} +2 z^8 a^{-4} -12 z^4 a^{-4} +12 z^2 a^{-4} -3 a^{-4} +8 z^7 a^{-3} -27 z^5 a^{-3} +26 z^3 a^{-3} -10 z a^{-3} +2 z^8 a^{-2} -3 z^6 a^{-2} -6 z^4 a^{-2} +5 z^2 a^{-2} + a^{-2} +3 z^7 a^{-1} -11 z^5 a^{-1} +11 z^3 a^{-1} -3 z a^{-1} - a^{-1} z^{-1} +z^6-3 z^4+2 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-1012345χ
14        2-2
12       2 2
10      42 -2
8     32  1
6    34   1
4   43    1
2  25     3
0 12      -1
-2 2       2
-41        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n14.gif

L10n14

L10n16.gif

L10n16