L10n16

From Knot Atlas
Jump to: navigation, search

L10n15.gif

L10n15

L10n17.gif

L10n17

Contents

L10n16.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n16 at Knotilus!


Link Presentations

[edit Notes on L10n16's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X4,19,1,20 X9,14,10,15 X8493 X12,5,13,6 X20,13,5,14 X11,16,12,17 X15,10,16,11 X2,18,3,17
Gauss code {1, -10, 5, -3}, {6, -1, 2, -5, -4, 9, -8, -6, 7, 4, -9, 8, 10, -2, 3, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L10n16 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial \frac{9}{q^{9/2}}-\frac{9}{q^{7/2}}+\frac{5}{q^{5/2}}-\frac{3}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{4}{q^{17/2}}-\frac{6}{q^{15/2}}+\frac{9}{q^{13/2}}-\frac{10}{q^{11/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^9 z-3 a^7 z^3-5 a^7 z-2 a^7 z^{-1} +2 a^5 z^5+7 a^5 z^3+10 a^5 z+5 a^5 z^{-1} -3 a^3 z^3-6 a^3 z-3 a^3 z^{-1} (db)
Kauffman polynomial -z^5 a^{11}+z^3 a^{11}-4 z^6 a^{10}+8 z^4 a^{10}-3 z^2 a^{10}-a^{10}-5 z^7 a^9+9 z^5 a^9-3 z^3 a^9+2 z a^9-2 z^8 a^8-6 z^6 a^8+20 z^4 a^8-10 z^2 a^8-10 z^7 a^7+21 z^5 a^7-17 z^3 a^7+9 z a^7-2 a^7 z^{-1} -2 z^8 a^6-5 z^6 a^6+15 z^4 a^6-14 z^2 a^6+5 a^6-5 z^7 a^5+11 z^5 a^5-19 z^3 a^5+15 z a^5-5 a^5 z^{-1} -3 z^6 a^4+3 z^4 a^4-7 z^2 a^4+5 a^4-6 z^3 a^3+8 z a^3-3 a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-2        33
-4       42-2
-6      51 4
-8     44  0
-10    65   1
-12   34    1
-14  36     -3
-16 13      2
-18 3       -3
-201        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n15.gif

L10n15

L10n17.gif

L10n17