L10n17

From Knot Atlas
Jump to: navigation, search

L10n16.gif

L10n16

L10n18.gif

L10n18

Contents

L10n17.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n17 at Knotilus!


Link Presentations

[edit Notes on L10n17's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X4,19,1,20 X5,12,6,13 X3849 X13,17,14,16 X9,15,10,14 X15,11,16,10 X11,20,12,5 X17,2,18,3
Gauss code {1, 10, -5, -3}, {-4, -1, 2, 5, -7, 8, -9, 4, -6, 7, -8, 6, -10, -2, 3, 9}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L10n17 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-u v^5+2 u v^4-3 u v^3+u v^2+v^3-3 v^2+2 v-1}{\sqrt{u} v^{5/2}} (db)
Jones polynomial q^{3/2}-2 \sqrt{q}+\frac{3}{\sqrt{q}}-\frac{5}{q^{3/2}}+\frac{4}{q^{5/2}}-\frac{5}{q^{7/2}}+\frac{4}{q^{9/2}}-\frac{3}{q^{11/2}}+\frac{1}{q^{13/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^7 (-z)-a^7 z^{-1} +a^5 z^5+5 a^5 z^3+8 a^5 z+4 a^5 z^{-1} -a^3 z^7-6 a^3 z^5-13 a^3 z^3-13 a^3 z-4 a^3 z^{-1} +a z^5+4 a z^3+4 a z+a z^{-1} (db)
Kauffman polynomial a^8 z^2-a^8+3 a^7 z^3-2 a^7 z+a^7 z^{-1} +2 a^6 z^6-6 a^6 z^4+10 a^6 z^2-4 a^6+3 a^5 z^7-12 a^5 z^5+20 a^5 z^3-14 a^5 z+4 a^5 z^{-1} +a^4 z^8+a^4 z^6-13 a^4 z^4+18 a^4 z^2-7 a^4+5 a^3 z^7-20 a^3 z^5+26 a^3 z^3-17 a^3 z+4 a^3 z^{-1} +a^2 z^8-11 a^2 z^4+13 a^2 z^2-4 a^2+2 a z^7-8 a z^5+9 a z^3-5 a z+a z^{-1} +z^6-4 z^4+4 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123χ
4        1-1
2       1 1
0      21 -1
-2     31  2
-4    23   1
-6   32    1
-8  12     1
-10 23      -1
-12 2       2
-141        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n16.gif

L10n16

L10n18.gif

L10n18