L10n26

From Knot Atlas
Jump to: navigation, search

L10n25.gif

L10n25

L10n27.gif

L10n27

Contents

L10n26.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n26 at Knotilus!


Link Presentations

[edit Notes on L10n26's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X16,11,17,12 X7,15,8,14 X15,9,16,8 X20,17,5,18 X18,14,19,13 X12,20,13,19 X2536 X4,9,1,10
Gauss code {1, -9, 2, -10}, {9, -1, -4, 5, 10, -2, 3, -8, 7, 4, -5, -3, 6, -7, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n26 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^3-4 u v^2+5 u v-u-v^3+5 v^2-4 v+1}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -\frac{2}{q^{9/2}}-q^{7/2}+\frac{4}{q^{7/2}}+3 q^{5/2}-\frac{7}{q^{5/2}}-5 q^{3/2}+\frac{7}{q^{3/2}}+7 \sqrt{q}-\frac{8}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^{-1} +z^3 a^3-z a^3-a^3 z^{-1} -z^5 a-2 z^3 a-2 z a+2 z^3 a^{-1} +2 z a^{-1} -z a^{-3} (db)
Kauffman polynomial -a^2 z^8-z^8-2 a^3 z^7-5 a z^7-3 z^7 a^{-1} -a^4 z^6-3 a^2 z^6-3 z^6 a^{-2} -5 z^6+a^3 z^5+6 a z^5+4 z^5 a^{-1} -z^5 a^{-3} -2 a^4 z^4+4 a^2 z^4+7 z^4 a^{-2} +13 z^4-3 a^5 z^3-3 a^3 z^3+2 z^3 a^{-1} +2 z^3 a^{-3} -a^2 z^2-4 z^2 a^{-2} -5 z^2+3 a^5 z+3 a^3 z-z a^{-1} -z a^{-3} +a^4-a^5 z^{-1} -a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234χ
8        11
6       2 -2
4      31 2
2     42  -2
0    43   1
-2   45    1
-4  33     0
-6 14      3
-813       -2
-102        2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-4 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n25.gif

L10n25

L10n27.gif

L10n27