L10n27

From Knot Atlas
Jump to: navigation, search

L10n26.gif

L10n26

L10n28.gif

L10n28

Contents

L10n27.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n27 at Knotilus!


Link Presentations

[edit Notes on L10n27's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X11,17,12,16 X14,7,15,8 X8,15,9,16 X17,5,18,20 X13,18,14,19 X19,12,20,13 X2536 X4,9,1,10
Gauss code {1, -9, 2, -10}, {9, -1, 4, -5, 10, -2, -3, 8, -7, -4, 5, 3, -6, 7, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n27 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^3-4 u v^2+3 u v-u-v^3+3 v^2-4 v+1}{\sqrt{u} v^{3/2}} (db)
Jones polynomial \frac{6}{q^{9/2}}-\frac{7}{q^{7/2}}+\frac{5}{q^{5/2}}-\frac{5}{q^{3/2}}-\frac{1}{q^{15/2}}+\frac{3}{q^{13/2}}-\frac{5}{q^{11/2}}-\sqrt{q}+\frac{3}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial z a^7-2 z^3 a^5-2 z a^5+a^5 z^{-1} +z^5 a^3+2 z^3 a^3-a^3 z^{-1} -z^3 a-z a (db)
Kauffman polynomial a^9 z^3-a^9 z+3 a^8 z^4-2 a^8 z^2+a^7 z^7-a^7 z^5+4 a^7 z^3-a^7 z+a^6 z^8-a^6 z^6+3 a^6 z^4-a^6 z^2+4 a^5 z^7-8 a^5 z^5+6 a^5 z^3-2 a^5 z+a^5 z^{-1} +a^4 z^8+2 a^4 z^6-7 a^4 z^4+3 a^4 z^2-a^4+3 a^3 z^7-6 a^3 z^5+a^3 z^3-a^3 z+a^3 z^{-1} +3 a^2 z^6-7 a^2 z^4+2 a^2 z^2+a z^5-2 a z^3+a z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
2        11
0       2 -2
-2      31 2
-4     33  0
-6    42   2
-8   23    1
-10  34     -1
-12 13      2
-14 2       -2
-161        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n26.gif

L10n26

L10n28.gif

L10n28