L10n28

From Knot Atlas
Jump to: navigation, search

L10n27.gif

L10n27

L10n29.gif

L10n29

Contents

L10n28.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n28 at Knotilus!


Link Presentations

[edit Notes on L10n28's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X7,14,8,15 X11,19,12,18 X15,20,16,5 X19,16,20,17 X17,13,18,12 X13,8,14,9 X2536 X4,9,1,10
Gauss code {1, -9, 2, -10}, {9, -1, -3, 8, 10, -2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n28 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(2)^3+t(2)^3-2 t(1) t(2)^2-t(2)^2-t(1) t(2)-2 t(2)+t(1)+1}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -\sqrt{q}+\frac{1}{\sqrt{q}}-\frac{2}{q^{3/2}}+\frac{1}{q^{5/2}}-\frac{1}{q^{7/2}}+\frac{1}{q^{9/2}}-\frac{1}{q^{13/2}}+\frac{1}{q^{15/2}}-\frac{1}{q^{17/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^9 z^{-1} -2 a^7 z-2 a^7 z^{-1} +a^5 z^{-1} +a^3 z^5+4 a^3 z^3+3 a^3 z+a^3 z^{-1} -a z^3-3 a z-a z^{-1} (db)
Kauffman polynomial -z^7 a^9+6 z^5 a^9-10 z^3 a^9+6 z a^9-a^9 z^{-1} -z^8 a^8+6 z^6 a^8-9 z^4 a^8+4 z^2 a^8-a^8-2 z^7 a^7+14 z^5 a^7-26 z^3 a^7+14 z a^7-2 a^7 z^{-1} -z^8 a^6+7 z^6 a^6-13 z^4 a^6+8 z^2 a^6-3 a^6-z^7 a^5+7 z^5 a^5-13 z^3 a^5+8 z a^5-a^5 z^{-1} -z^4 a^4+4 z^2 a^4-2 a^4-2 z^5 a^3+7 z^3 a^3-4 z a^3+a^3 z^{-1} -z^6 a^2+3 z^4 a^2-a^2-z^5 a+4 z^3 a-4 z a+a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
2          11
0           0
-2        21 1
-4      111  1
-6      11   0
-8    121    0
-10   111     -1
-12   12      1
-14 11        0
-16           0
-181          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2 i=0
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n27.gif

L10n27

L10n29.gif

L10n29