L10n34

From Knot Atlas
Jump to: navigation, search

L10n33.gif

L10n33

L10n35.gif

L10n35

Contents

L10n34.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n34 at Knotilus!


Link Presentations

[edit Notes on L10n34's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X16,8,17,7 X17,20,18,5 X11,19,12,18 X19,11,20,10 X14,10,15,9 X8,16,9,15 X2536 X4,14,1,13
Gauss code {1, -9, 2, -10}, {9, -1, 3, -8, 7, 6, -5, -2, 10, -7, 8, -3, -4, 5, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10n34 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{3 (u-1) (v-1)}{\sqrt{u} \sqrt{v}} (db)
Jones polynomial q^{15/2}-2 q^{13/2}+3 q^{11/2}-4 q^{9/2}+4 q^{7/2}-4 q^{5/2}+3 q^{3/2}-3 \sqrt{q} (db)
Signature 1 (db)
HOMFLY-PT polynomial z a^{-7} -z^3 a^{-5} + a^{-5} z^{-1} -2 z^3 a^{-3} -4 z a^{-3} -3 a^{-3} z^{-1} +3 z a^{-1} +2 a^{-1} z^{-1} (db)
Kauffman polynomial -z^8 a^{-4} -z^8 a^{-6} -z^7 a^{-3} -3 z^7 a^{-5} -2 z^7 a^{-7} +3 z^6 a^{-4} +2 z^6 a^{-6} -z^6 a^{-8} +z^5 a^{-3} +9 z^5 a^{-5} +8 z^5 a^{-7} -3 z^4 a^{-2} -6 z^4 a^{-4} +z^4 a^{-6} +4 z^4 a^{-8} +3 z^3 a^{-3} -5 z^3 a^{-5} -8 z^3 a^{-7} +4 z^2 a^{-2} +9 z^2 a^{-4} +z^2 a^{-6} -4 z^2 a^{-8} -5 z a^{-1} -7 z a^{-3} +2 z a^{-7} -3 a^{-2} -3 a^{-4} - a^{-6} +2 a^{-1} z^{-1} +3 a^{-3} z^{-1} + a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
01234567χ
16       1-1
14      1 1
12     21 -1
10    21  1
8   22   0
6  22    0
4 12     1
222      0
03       3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=0 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n33.gif

L10n33

L10n35.gif

L10n35