L10n42

From Knot Atlas
Jump to: navigation, search

L10n41.gif

L10n41

L10n43.gif

L10n43

Contents

L10n42.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n42 at Knotilus!


Link Presentations

[edit Notes on L10n42's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X20,10,7,9 X2738 X15,5,16,4 X5,13,6,12 X16,12,17,11 X6,18,1,17 X19,15,20,14 X13,19,14,18
Gauss code {1, -4, 2, 5, -6, -8}, {4, -1, 3, -2, 7, 6, -10, 9, -5, -7, 8, 10, -9, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n42 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v^4-u^2 v^3-u v^4+u v^2-u-v+1}{u v^2} (db)
Jones polynomial -2 q^{9/2}+q^{7/2}-2 q^{5/2}+q^{3/2}+q^{15/2}-q^{13/2}+q^{11/2}-\sqrt{q} (db)
Signature 5 (db)
HOMFLY-PT polynomial -z a^{-9} +z^5 a^{-7} +5 z^3 a^{-7} +5 z a^{-7} + a^{-7} z^{-1} -z^7 a^{-5} -6 z^5 a^{-5} -11 z^3 a^{-5} -9 z a^{-5} -3 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +6 z a^{-3} +2 a^{-3} z^{-1} (db)
Kauffman polynomial -z^8 a^{-4} -z^8 a^{-6} -z^7 a^{-3} -3 z^7 a^{-5} -2 z^7 a^{-7} +5 z^6 a^{-4} +4 z^6 a^{-6} -z^6 a^{-8} +6 z^5 a^{-3} +17 z^5 a^{-5} +11 z^5 a^{-7} -5 z^4 a^{-4} +5 z^4 a^{-8} -11 z^3 a^{-3} -27 z^3 a^{-5} -16 z^3 a^{-7} -2 z^2 a^{-4} -7 z^2 a^{-6} -5 z^2 a^{-8} +8 z a^{-3} +15 z a^{-5} +8 z a^{-7} +z a^{-9} +3 a^{-4} +3 a^{-6} + a^{-8} -2 a^{-3} z^{-1} -3 a^{-5} z^{-1} - a^{-7} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-1012345χ
16       1-1
14      110
12     11 0
10    111 1
8   12   1
6  111   1
4 12     1
2        0
01       1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4 i=6
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n41.gif

L10n41

L10n43.gif

L10n43