L10n43

From Knot Atlas
Jump to: navigation, search

L10n42.gif

L10n42

L10n44.gif

L10n44

Contents

L10n43.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n43 at Knotilus!


Link Presentations

[edit Notes on L10n43's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X20,10,7,9 X2738 X4,15,5,16 X5,13,6,12 X16,12,17,11 X17,6,18,1 X19,15,20,14 X13,19,14,18
Gauss code {1, -4, 2, -5, -6, 8}, {4, -1, 3, -2, 7, 6, -10, 9, 5, -7, -8, 10, -9, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n43 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^2 v^2-2 u^2 v+u^2-3 u v^2+5 u v-3 u+v^2-2 v+1}{u v} (db)
Jones polynomial -q^{13/2}+3 q^{11/2}-4 q^{9/2}+6 q^{7/2}-7 q^{5/2}+6 q^{3/2}-6 \sqrt{q}+\frac{3}{\sqrt{q}}-\frac{2}{q^{3/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z^5 a^{-3} -3 z^3 a^{-1} +3 z^3 a^{-3} -z^3 a^{-5} +2 a z-6 z a^{-1} +4 z a^{-3} -z a^{-5} +2 a z^{-1} -3 a^{-1} z^{-1} + a^{-3} z^{-1} (db)
Kauffman polynomial z^5 a^{-7} -2 z^3 a^{-7} +3 z^6 a^{-6} -8 z^4 a^{-6} +4 z^2 a^{-6} +3 z^7 a^{-5} -7 z^5 a^{-5} +4 z^3 a^{-5} -2 z a^{-5} +z^8 a^{-4} +3 z^6 a^{-4} -12 z^4 a^{-4} +9 z^2 a^{-4} - a^{-4} +5 z^7 a^{-3} -13 z^5 a^{-3} +15 z^3 a^{-3} -7 z a^{-3} + a^{-3} z^{-1} +z^8 a^{-2} +z^6 a^{-2} -4 z^4 a^{-2} +7 z^2 a^{-2} -3 a^{-2} +2 z^7 a^{-1} -5 z^5 a^{-1} +3 a z^3+12 z^3 a^{-1} -5 a z-10 z a^{-1} +2 a z^{-1} +3 a^{-1} z^{-1} +z^6+2 z^2-3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456χ
14        11
12       2 -2
10      21 1
8     42  -2
6    32   1
4   34    1
2  33     0
0 14      3
-212       -1
-42        2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-2 {\mathbb Z}^{2} {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n42.gif

L10n42

L10n44.gif

L10n44