L10n44

From Knot Atlas
Jump to: navigation, search

L10n43.gif

L10n43

L10n45.gif

L10n45

Contents

L10n44.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n44 at Knotilus!


Link Presentations

[edit Notes on L10n44's Link Presentations]

Planar diagram presentation X8192 X9,19,10,18 X6718 X13,20,14,7 X5,13,6,12 X3,10,4,11 X15,5,16,4 X11,16,12,17 X19,14,20,15 X17,2,18,3
Gauss code {1, 10, -6, 7, -5, -3}, {3, -1, -2, 6, -8, 5, -4, 9, -7, 8, -10, 2, -9, 4}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10n44 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u+v-1) (u v-u-v)}{u v} (db)
Jones polynomial -\frac{3}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{3}{q^{5/2}}+\frac{2}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{2}{q^{13/2}}+\frac{2}{q^{11/2}}-\frac{2}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^7 (-z)+a^5 z^3+a^5 z+a^3 z^3+a^3 z+a^3 z^{-1} -2 a z-a z^{-1} (db)
Kauffman polynomial a^8 z^6-4 a^8 z^4+3 a^8 z^2+2 a^7 z^7-9 a^7 z^5+10 a^7 z^3-3 a^7 z+a^6 z^8-3 a^6 z^6+a^6 z^2+3 a^5 z^7-13 a^5 z^5+15 a^5 z^3-5 a^5 z+a^4 z^8-4 a^4 z^6+5 a^4 z^4-3 a^4 z^2+a^3 z^7-4 a^3 z^5+5 a^3 z^3-a^3 z^{-1} +a^2 z^4-a^2 z^2+a^2+2 a z-a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
0       22
-2      110
-4     21 1
-6    22  0
-8   11   0
-10  12    1
-12 11     0
-14 1      1
-161       -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n43.gif

L10n43

L10n45.gif

L10n45