L10n47

From Knot Atlas
Jump to: navigation, search

L10n46.gif

L10n46

L10n48.gif

L10n48

Contents

L10n47.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n47 at Knotilus!


Link Presentations

[edit Notes on L10n47's Link Presentations]

Planar diagram presentation X8192 X9,19,10,18 X6718 X20,14,7,13 X12,5,13,6 X3,10,4,11 X4,15,5,16 X16,12,17,11 X14,20,15,19 X17,2,18,3
Gauss code {1, 10, -6, -7, 5, -3}, {3, -1, -2, 6, 8, -5, 4, -9, 7, -8, -10, 2, 9, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10n47 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{-u^2 v^2+2 u^2 v+u v^4-2 u v^3+3 u v^2-2 u v+u+2 v^3-v^2}{u v^2} (db)
Jones polynomial -q^{3/2}+3 \sqrt{q}-\frac{4}{\sqrt{q}}+\frac{5}{q^{3/2}}-\frac{6}{q^{5/2}}+\frac{4}{q^{7/2}}-\frac{4}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^5+2 z a^5+2 a^5 z^{-1} -z^5 a^3-4 z^3 a^3-7 z a^3-3 a^3 z^{-1} +2 z^3 a+3 z a+a z^{-1} -z a^{-1} (db)
Kauffman polynomial -a^4 z^8-a^2 z^8-3 a^5 z^7-4 a^3 z^7-a z^7-2 a^6 z^6+2 a^2 z^6-a^7 z^5+11 a^5 z^5+14 a^3 z^5+2 a z^5+5 a^6 z^4+6 a^4 z^4-2 a^2 z^4-3 z^4+3 a^7 z^3-14 a^5 z^3-21 a^3 z^3-5 a z^3-z^3 a^{-1} -a^6 z^2-8 a^4 z^2-4 a^2 z^2+3 z^2-a^7 z+9 a^5 z+12 a^3 z+3 a z+z a^{-1} +3 a^4+3 a^2+1-2 a^5 z^{-1} -3 a^3 z^{-1} -a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
4        11
2       2 -2
0      21 1
-2     43  -1
-4    21   1
-6   24    2
-8  22     0
-10  2      2
-1212       -1
-141        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z} {\mathbb Z}
r=-5 {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n46.gif

L10n46

L10n48.gif

L10n48