L10n48

From Knot Atlas
Jump to: navigation, search

L10n47.gif

L10n47

L10n49.gif

L10n49

Contents

L10n48.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n48 at Knotilus!


Link Presentations

[edit Notes on L10n48's Link Presentations]

Planar diagram presentation X8192 X18,9,19,10 X6718 X20,14,7,13 X12,5,13,6 X3,10,4,11 X15,5,16,4 X11,16,12,17 X14,20,15,19 X2,18,3,17
Gauss code {1, -10, -6, 7, 5, -3}, {3, -1, 2, 6, -8, -5, 4, -9, -7, 8, 10, -2, 9, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10n48 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v^2-u^2 v-2 u v^2+5 u v-2 u-v+1}{u v} (db)
Jones polynomial -q^{3/2}+2 \sqrt{q}-\frac{4}{\sqrt{q}}+\frac{4}{q^{3/2}}-\frac{5}{q^{5/2}}+\frac{4}{q^{7/2}}-\frac{3}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^5+2 z a^5+a^5 z^{-1} -z^5 a^3-4 z^3 a^3-6 z a^3-2 a^3 z^{-1} +2 z^3 a+4 z a+2 a z^{-1} -z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -a^4 z^8-a^2 z^8-2 a^5 z^7-3 a^3 z^7-a z^7-2 a^6 z^6+2 a^4 z^6+4 a^2 z^6-a^7 z^5+6 a^5 z^5+11 a^3 z^5+4 a z^5+6 a^6 z^4-a^4 z^4-9 a^2 z^4-2 z^4+3 a^7 z^3-5 a^5 z^3-18 a^3 z^3-11 a z^3-z^3 a^{-1} -3 a^6 z^2+5 a^2 z^2+2 z^2-a^7 z+3 a^5 z+11 a^3 z+9 a z+2 z a^{-1} -a^2-a^5 z^{-1} -2 a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
4        11
2       1 -1
0      31 2
-2     22  0
-4    32   1
-6   23    1
-8  12     -1
-10 12      1
-12 1       -1
-141        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n47.gif

L10n47

L10n49.gif

L10n49