L10n49

From Knot Atlas
Jump to: navigation, search

L10n48.gif

L10n48

L10n50.gif

L10n50

Contents

L10n49.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n49 at Knotilus!


Link Presentations

[edit Notes on L10n49's Link Presentations]

Planar diagram presentation X8192 X18,9,19,10 X6718 X20,14,7,13 X12,5,13,6 X3,10,4,11 X4,15,5,16 X11,16,12,17 X14,20,15,19 X17,2,18,3
Gauss code {1, 10, -6, -7, 5, -3}, {3, -1, 2, 6, -8, -5, 4, -9, 7, 8, -10, -2, 9, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10n49 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^2 v^4-2 u^2 v^3-u v^2-2 v+1}{u v^2} (db)
Jones polynomial -\frac{2}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{2}{q^{5/2}}+\frac{1}{q^{3/2}}-\frac{1}{q^{17/2}}+\frac{1}{q^{15/2}}-\frac{2}{q^{13/2}}+\frac{2}{q^{11/2}}-\frac{1}{\sqrt{q}} (db)
Signature -5 (db)
HOMFLY-PT polynomial z a^9+a^9 z^{-1} -z^5 a^7-5 z^3 a^7-6 z a^7-2 a^7 z^{-1} +z^7 a^5+6 z^5 a^5+11 z^3 a^5+8 z a^5+2 a^5 z^{-1} -z^5 a^3-5 z^3 a^3-6 z a^3-a^3 z^{-1} (db)
Kauffman polynomial a^{11} z+a^{10} z^2+2 a^9 z^3-4 a^9 z+a^9 z^{-1} +a^8 z^6-3 a^8 z^4+a^8 z^2+2 a^7 z^7-10 a^7 z^5+15 a^7 z^3-10 a^7 z+2 a^7 z^{-1} +a^6 z^8-4 a^6 z^6+3 a^6 z^4-a^6 z^2+a^6+3 a^5 z^7-16 a^5 z^5+24 a^5 z^3-12 a^5 z+2 a^5 z^{-1} +a^4 z^8-5 a^4 z^6+6 a^4 z^4-a^4 z^2+a^3 z^7-6 a^3 z^5+11 a^3 z^3-7 a^3 z+a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
0        11
-2         0
-4      21 1
-6     11  0
-8    11   0
-10   11    0
-12  11     0
-14  1      1
-1611       0
-181        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-6 {\mathbb Z} {\mathbb Z}
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n48.gif

L10n48

L10n50.gif

L10n50