L10n50

From Knot Atlas
Jump to: navigation, search

L10n49.gif

L10n49

L10n51.gif

L10n51

Contents

L10n50.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n50 at Knotilus!


Link Presentations

[edit Notes on L10n50's Link Presentations]

Planar diagram presentation X8192 X18,9,19,10 X6718 X13,20,14,7 X12,5,13,6 X10,4,11,3 X4,15,5,16 X16,12,17,11 X19,14,20,15 X2,18,3,17
Gauss code {1, -10, 6, -7, 5, -3}, {3, -1, 2, -6, 8, -5, -4, 9, 7, -8, 10, -2, -9, 4}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L10n50 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1)^2 t(2)^4-t(1) t(2)^4-2 t(1)^2 t(2)^3+2 t(1) t(2)^3+t(1)^2 t(2)^2-t(1) t(2)^2+t(2)^2+2 t(1) t(2)-2 t(2)-t(1)+1}{t(1) t(2)^2} (db)
Jones polynomial q^{3/2}-3 \sqrt{q}+\frac{3}{\sqrt{q}}-\frac{5}{q^{3/2}}+\frac{5}{q^{5/2}}-\frac{5}{q^{7/2}}+\frac{4}{q^{9/2}}-\frac{3}{q^{11/2}}+\frac{1}{q^{13/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^7 (-z)+a^5 z^5+4 a^5 z^3+3 a^5 z-a^3 z^7-5 a^3 z^5-7 a^3 z^3-3 a^3 z+a^3 z^{-1} +a z^5+3 a z^3-a z^{-1} (db)
Kauffman polynomial a^8 z^2+3 a^7 z^3-2 a^7 z+a^6 z^6+3 a^5 z^7-11 a^5 z^5+15 a^5 z^3-6 a^5 z+2 a^4 z^8-6 a^4 z^6+5 a^4 z^4-2 a^4 z^2+6 a^3 z^7-23 a^3 z^5+23 a^3 z^3-5 a^3 z-a^3 z^{-1} +2 a^2 z^8-6 a^2 z^6+2 a^2 z^4+a^2+3 a z^7-12 a z^5+11 a z^3-a z-a z^{-1} +z^6-3 z^4+z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123χ
4        1-1
2       2 2
0      11 0
-2     42  2
-4    22   0
-6   33    0
-8  23     1
-10 12      -1
-12 2       2
-141        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n49.gif

L10n49

L10n51.gif

L10n51