L10n94

From Knot Atlas
Jump to: navigation, search

L10n93.gif

L10n93

L10n95.gif

L10n95

Contents

L10n94.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n94 at Knotilus!


Link Presentations

[edit Notes on L10n94's Link Presentations]

Planar diagram presentation X8192 X18,10,19,9 X6,18,1,17 X7,17,8,16 X3,10,4,11 X14,6,15,5 X4,14,5,13 X11,13,12,20 X15,7,16,12 X19,3,20,2
Gauss code {1, 10, -5, -7, 6, -3}, {-4, -1, 2, 5, -8, 9}, {7, -6, -9, 4, 3, -2, -10, 8}
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L10n94 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1) t(2) t(3)+1) \left(t(3)^2-t(1) t(2)\right)}{t(1) t(2) t(3)^{3/2}} (db)
Jones polynomial q^9+q^4+q^3+q^2 (db)
Signature 3 (db)
HOMFLY-PT polynomial z^2 a^{-8} + a^{-8} z^{-2} +3 a^{-8} -z^4 a^{-6} -6 z^2 a^{-6} -2 a^{-6} z^{-2} -9 a^{-6} +z^4 a^{-4} +5 z^2 a^{-4} + a^{-4} z^{-2} +6 a^{-4} (db)
Kauffman polynomial z^6 a^{-10} -6 z^4 a^{-10} +9 z^2 a^{-10} -2 a^{-10} -z^2 a^{-8} - a^{-8} z^{-2} +3 a^{-8} -z^5 a^{-7} +6 z^3 a^{-7} -9 z a^{-7} +2 a^{-7} z^{-1} -z^6 a^{-6} +7 z^4 a^{-6} -15 z^2 a^{-6} -2 a^{-6} z^{-2} +11 a^{-6} -z^5 a^{-5} +6 z^3 a^{-5} -9 z a^{-5} +2 a^{-5} z^{-1} +z^4 a^{-4} -5 z^2 a^{-4} - a^{-4} z^{-2} +7 a^{-4} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
012345678χ
19        11
17        11
15     11  0
13         0
11   121   0
9  1      1
7  31     2
51 1      2
31        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3 i=5
r=0 {\mathbb Z} {\mathbb Z}
r=1
r=2 {\mathbb Z} {\mathbb Z}^{3} {\mathbb Z}
r=3 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}^{2}
r=5 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=6 {\mathbb Z}_2 {\mathbb Z}
r=7
r=8 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n93.gif

L10n93

L10n95.gif

L10n95