L11a108

From Knot Atlas
Jump to: navigation, search

L11a107.gif

L11a107

L11a109.gif

L11a109

Contents

L11a108.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a108 at Knotilus!


Link Presentations

[edit Notes on L11a108's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X22,15,5,16 X16,7,17,8 X18,9,19,10 X8,17,9,18 X10,21,11,22 X20,11,21,12 X12,19,13,20 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, 4, -6, 5, -7, 8, -9, 11, -2, 3, -4, 6, -5, 9, -8, 7, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a108 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{4 u v^4-6 u v^3+6 u v^2-5 u v+2 u+2 v^5-5 v^4+6 v^3-6 v^2+4 v}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\frac{7}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{27/2}}-\frac{2}{q^{25/2}}+\frac{5}{q^{23/2}}-\frac{8}{q^{21/2}}+\frac{12}{q^{19/2}}-\frac{15}{q^{17/2}}+\frac{14}{q^{15/2}}-\frac{14}{q^{13/2}}+\frac{10}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{13} (-z)-2 a^{13} z^{-1} +3 a^{11} z^3+8 a^{11} z+4 a^{11} z^{-1} -2 a^9 z^5-5 a^9 z^3-3 a^9 z-a^9 z^{-1} -3 a^7 z^5-9 a^7 z^3-6 a^7 z-a^7 z^{-1} -a^5 z^5-2 a^5 z^3 (db)
Kauffman polynomial a^{16} z^6-4 a^{16} z^4+5 a^{16} z^2-2 a^{16}+2 a^{15} z^7-6 a^{15} z^5+4 a^{15} z^3+a^{15} z+2 a^{14} z^8-2 a^{14} z^6-6 a^{14} z^4+7 a^{14} z^2-a^{14}+2 a^{13} z^9-3 a^{13} z^7+5 a^{13} z^5-12 a^{13} z^3+8 a^{13} z-2 a^{13} z^{-1} +a^{12} z^{10}+2 a^{12} z^8-7 a^{12} z^6+13 a^{12} z^4-17 a^{12} z^2+6 a^{12}+6 a^{11} z^9-18 a^{11} z^7+35 a^{11} z^5-36 a^{11} z^3+16 a^{11} z-4 a^{11} z^{-1} +a^{10} z^{10}+6 a^{10} z^8-20 a^{10} z^6+30 a^{10} z^4-19 a^{10} z^2+5 a^{10}+4 a^9 z^9-7 a^9 z^7+8 a^9 z^5-4 a^9 z^3+3 a^9 z-a^9 z^{-1} +6 a^8 z^8-13 a^8 z^6+10 a^8 z^4-a^8+6 a^7 z^7-15 a^7 z^5+14 a^7 z^3-6 a^7 z+a^7 z^{-1} +3 a^6 z^6-5 a^6 z^4+a^5 z^5-2 a^5 z^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-4           11
-6          31-2
-8         4  4
-10        63  -3
-12       84   4
-14      77    0
-16     87     1
-18    47      3
-20   48       -4
-22  14        3
-24 14         -3
-26 1          1
-281           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-7 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-6 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a107.gif

L11a107

L11a109.gif

L11a109