L11a109

From Knot Atlas
Jump to: navigation, search

L11a108.gif

L11a108

L11a110.gif

L11a110

Contents

L11a109.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a109 at Knotilus!


Link Presentations

[edit Notes on L11a109's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X22,15,5,16 X16,7,17,8 X8,21,9,22 X20,11,21,12 X18,9,19,10 X10,19,11,20 X12,17,13,18 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, 4, -5, 7, -8, 6, -9, 11, -2, 3, -4, 9, -7, 8, -6, 5, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a109 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{4 u v^4-7 u v^3+8 u v^2-6 u v+2 u+2 v^5-6 v^4+8 v^3-7 v^2+4 v}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\frac{7}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{27/2}}-\frac{3}{q^{25/2}}+\frac{7}{q^{23/2}}-\frac{11}{q^{21/2}}+\frac{15}{q^{19/2}}-\frac{17}{q^{17/2}}+\frac{17}{q^{15/2}}-\frac{16}{q^{13/2}}+\frac{10}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{13} (-z)-a^{13} z^{-1} +3 a^{11} z^3+5 a^{11} z+a^{11} z^{-1} -2 a^9 z^5-3 a^9 z^3+2 a^9 z+2 a^9 z^{-1} -3 a^7 z^5-9 a^7 z^3-8 a^7 z-2 a^7 z^{-1} -a^5 z^5-2 a^5 z^3 (db)
Kauffman polynomial a^{16} z^6-3 a^{16} z^4+3 a^{16} z^2-a^{16}+3 a^{15} z^7-8 a^{15} z^5+6 a^{15} z^3-a^{15} z+4 a^{14} z^8-7 a^{14} z^6-a^{14} z^4+3 a^{14} z^2+3 a^{13} z^9-11 a^{13} z^5+6 a^{13} z^3-a^{13} z^{-1} +a^{12} z^{10}+8 a^{12} z^8-22 a^{12} z^6+20 a^{12} z^4-13 a^{12} z^2+3 a^{12}+7 a^{11} z^9-11 a^{11} z^7+6 a^{11} z^5-4 a^{11} z^3+3 a^{11} z-a^{11} z^{-1} +a^{10} z^{10}+10 a^{10} z^8-28 a^{10} z^6+30 a^{10} z^4-10 a^{10} z^2+4 a^9 z^9-2 a^9 z^7-7 a^9 z^5+14 a^9 z^3-6 a^9 z+2 a^9 z^{-1} +6 a^8 z^8-11 a^8 z^6+7 a^8 z^4+3 a^8 z^2-3 a^8+6 a^7 z^7-15 a^7 z^5+16 a^7 z^3-8 a^7 z+2 a^7 z^{-1} +3 a^6 z^6-5 a^6 z^4+a^5 z^5-2 a^5 z^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-4           11
-6          31-2
-8         4  4
-10        63  -3
-12       104   6
-14      87    -1
-16     99     0
-18    68      2
-20   59       -4
-22  26        4
-24 15         -4
-26 2          2
-281           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-8 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-7 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-6 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-5 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a108.gif

L11a108

L11a110.gif

L11a110