L11a134

From Knot Atlas
Jump to: navigation, search

L11a133.gif

L11a133

L11a135.gif

L11a135

Contents

L11a134.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a134 at Knotilus!


Link Presentations

[edit Notes on L11a134's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X10,5,11,6 X14,3,15,4 X18,13,19,14 X22,20,5,19 X20,12,21,11 X12,22,13,21 X2,9,3,10 X8,15,9,16
Gauss code {1, -10, 5, -3}, {4, -1, 2, -11, 10, -4, 8, -9, 6, -5, 11, -2, 3, -6, 7, -8, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a134 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(2)^5+4 t(1) t(2)^4-6 t(2)^4-10 t(1) t(2)^3+12 t(2)^3+12 t(1) t(2)^2-10 t(2)^2-6 t(1) t(2)+4 t(2)+t(1)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial q^{5/2}-4 q^{3/2}+9 \sqrt{q}-\frac{14}{\sqrt{q}}+\frac{18}{q^{3/2}}-\frac{22}{q^{5/2}}+\frac{20}{q^{7/2}}-\frac{18}{q^{9/2}}+\frac{13}{q^{11/2}}-\frac{8}{q^{13/2}}+\frac{4}{q^{15/2}}-\frac{1}{q^{17/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^7-a^7 z^{-1} -z^5 a^5+z^3 a^5+5 z a^5+4 a^5 z^{-1} -3 z^5 a^3-8 z^3 a^3-10 z a^3-4 a^3 z^{-1} -z^5 a+z^3 a+3 z a+a z^{-1} +z^3 a^{-1} (db)
Kauffman polynomial a^9 z^7-3 a^9 z^5+3 a^9 z^3-a^9 z+4 a^8 z^8-14 a^8 z^6+15 a^8 z^4-4 a^8 z^2-a^8+5 a^7 z^9-13 a^7 z^7+4 a^7 z^5+8 a^7 z^3-4 a^7 z+a^7 z^{-1} +2 a^6 z^{10}+8 a^6 z^8-39 a^6 z^6+35 a^6 z^4-2 a^6 z^2-4 a^6+12 a^5 z^9-23 a^5 z^7-8 a^5 z^5+27 a^5 z^3-14 a^5 z+4 a^5 z^{-1} +2 a^4 z^{10}+16 a^4 z^8-47 a^4 z^6+24 a^4 z^4+8 a^4 z^2-7 a^4+7 a^3 z^9+4 a^3 z^7-37 a^3 z^5+34 a^3 z^3-15 a^3 z+4 a^3 z^{-1} +12 a^2 z^8-13 a^2 z^6-5 a^2 z^4+z^4 a^{-2} +9 a^2 z^2-4 a^2+13 a z^7-18 a z^5+4 z^5 a^{-1} +11 a z^3-z^3 a^{-1} -4 a z+a z^{-1} +9 z^6-8 z^4+3 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
6           1-1
4          3 3
2         61 -5
0        83  5
-2       117   -4
-4      117    4
-6     911     2
-8    911      -2
-10   510       5
-12  38        -5
-14 15         4
-16 3          -3
-181           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=-3 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a133.gif

L11a133

L11a135.gif

L11a135