From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a135 at Knotilus!

Link Presentations

[edit Notes on L11a135's Link Presentations]

Planar diagram presentation X6172 X2,9,3,10 X14,3,15,4 X10,5,11,6 X20,11,21,12 X22,13,5,14 X12,21,13,22 X4,19,1,20 X18,16,19,15 X16,8,17,7 X8,18,9,17
Gauss code {1, -2, 3, -8}, {4, -1, 10, -11, 2, -4, 5, -7, 6, -3, 9, -10, 11, -9, 8, -5, 7, -6}
A Braid Representative
A Morse Link Presentation L11a135 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 t(1) t(2)^5-2 t(2)^5-6 t(1) t(2)^4+6 t(2)^4+10 t(1) t(2)^3-9 t(2)^3-9 t(1) t(2)^2+10 t(2)^2+6 t(1) t(2)-6 t(2)-2 t(1)+2}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial q^{3/2}-4 \sqrt{q}+\frac{8}{\sqrt{q}}-\frac{14}{q^{3/2}}+\frac{19}{q^{5/2}}-\frac{23}{q^{7/2}}+\frac{22}{q^{9/2}}-\frac{20}{q^{11/2}}+\frac{15}{q^{13/2}}-\frac{9}{q^{15/2}}+\frac{4}{q^{17/2}}-\frac{1}{q^{19/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^7 z^5+2 a^7 z^3+a^7 z-a^5 z^7-3 a^5 z^5-3 a^5 z^3-a^5 z+a^5 z^{-1} -a^3 z^7-3 a^3 z^5-3 a^3 z^3-2 a^3 z-a^3 z^{-1} +a z^5+2 a z^3 (db)
Kauffman polynomial -z^5 a^{11}+z^3 a^{11}-4 z^6 a^{10}+5 z^4 a^{10}-2 z^2 a^{10}-8 z^7 a^9+12 z^5 a^9-7 z^3 a^9+z a^9-9 z^8 a^8+10 z^6 a^8-z^4 a^8-z^2 a^8-6 z^9 a^7-2 z^7 a^7+14 z^5 a^7-6 z^3 a^7-2 z^{10} a^6-13 z^8 a^6+27 z^6 a^6-14 z^4 a^6+3 z^2 a^6-12 z^9 a^5+19 z^7 a^5-9 z^5 a^5+4 z^3 a^5+z a^5-a^5 z^{-1} -2 z^{10} a^4-11 z^8 a^4+32 z^6 a^4-24 z^4 a^4+4 z^2 a^4+a^4-6 z^9 a^3+9 z^7 a^3-4 z^3 a^3+2 z a^3-a^3 z^{-1} -7 z^8 a^2+18 z^6 a^2-14 z^4 a^2+2 z^2 a^2-4 z^7 a+10 z^5 a-6 z^3 a-z^6+2 z^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
4           1-1
2          3 3
0         51 -4
-2        93  6
-4       116   -5
-6      128    4
-8     1011     1
-10    1012      -2
-12   611       5
-14  39        -6
-16 16         5
-18 3          -3
-201           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-4 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=-3 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.