L11a15

From Knot Atlas
Jump to: navigation, search

L11a14.gif

L11a14

L11a16.gif

L11a16

Contents

L11a15.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a15 at Knotilus!


Link Presentations

[edit Notes on L11a15's Link Presentations]

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X18,10,19,9 X8493 X14,6,15,5 X22,16,5,15 X20,18,21,17 X16,22,17,21 X10,20,11,19 X2,12,3,11
Gauss code {1, -11, 5, -3}, {6, -1, 2, -5, 4, -10, 11, -2, 3, -6, 7, -9, 8, -4, 10, -8, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a15 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) \left(3 v^2-5 v+3\right)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -12 q^{9/2}+13 q^{7/2}-14 q^{5/2}+\frac{1}{q^{5/2}}+11 q^{3/2}-\frac{3}{q^{3/2}}-q^{17/2}+4 q^{15/2}-6 q^{13/2}+9 q^{11/2}-9 \sqrt{q}+\frac{5}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^3 a^{-7} + a^{-7} z^{-1} +z^5 a^{-5} +z^3 a^{-5} -z a^{-5} -2 a^{-5} z^{-1} +z^5 a^{-3} -z a^{-3} +z^5 a^{-1} -a z^3+2 z^3 a^{-1} -a z+3 z a^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial z^7 a^{-9} -3 z^5 a^{-9} +z^3 a^{-9} +4 z^8 a^{-8} -16 z^6 a^{-8} +15 z^4 a^{-8} -z^2 a^{-8} -2 a^{-8} +5 z^9 a^{-7} -20 z^7 a^{-7} +21 z^5 a^{-7} -6 z^3 a^{-7} + a^{-7} z^{-1} +2 z^{10} a^{-6} -21 z^6 a^{-6} +24 z^4 a^{-6} +z^2 a^{-6} -5 a^{-6} +9 z^9 a^{-5} -33 z^7 a^{-5} +36 z^5 a^{-5} -13 z^3 a^{-5} -z a^{-5} +2 a^{-5} z^{-1} +2 z^{10} a^{-4} -11 z^6 a^{-4} +9 z^4 a^{-4} +2 z^2 a^{-4} -3 a^{-4} +4 z^9 a^{-3} -8 z^7 a^{-3} +9 z^5 a^{-3} -9 z^3 a^{-3} +2 z a^{-3} +4 z^8 a^{-2} -2 z^6 a^{-2} +a^2 z^4-4 z^4 a^{-2} -a^2 z^2+z^2 a^{-2} + a^{-2} +4 z^7 a^{-1} +3 a z^5-4 a z^3-7 z^3 a^{-1} +2 a z+5 z a^{-1} - a^{-1} z^{-1} +4 z^6-3 z^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-1012345678χ
18           11
16          3 -3
14         31 2
12        63  -3
10       63   3
8      76    -1
6     76     1
4    47      3
2   57       -2
0  26        4
-2 13         -2
-4 2          2
-61           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a14.gif

L11a14

L11a16.gif

L11a16