L11a16

From Knot Atlas
Jump to: navigation, search

L11a15.gif

L11a15

L11a17.gif

L11a17

Contents

L11a16.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a16 at Knotilus!


Link Presentations

[edit Notes on L11a16's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X14,6,15,5 X8493 X18,10,19,9 X20,12,21,11 X22,14,5,13 X10,20,11,19 X12,22,13,21 X2,16,3,15
Gauss code {1, -11, 5, -3}, {4, -1, 2, -5, 6, -9, 7, -10, 8, -4, 11, -2, 3, -6, 9, -7, 10, -8}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation L11a16 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(t(2)^6-t(2)^5+t(2)^4-t(2)^3+t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{7/2}} (db)
Jones polynomial -8 q^{9/2}+6 q^{7/2}-6 q^{5/2}+3 q^{3/2}-q^{21/2}+3 q^{19/2}-4 q^{17/2}+6 q^{15/2}-7 q^{13/2}+8 q^{11/2}-3 \sqrt{q}+\frac{1}{\sqrt{q}} (db)
Signature 5 (db)
HOMFLY-PT polynomial z^9 a^{-5} -z^7 a^{-3} +7 z^7 a^{-5} -z^7 a^{-7} -5 z^5 a^{-3} +16 z^5 a^{-5} -5 z^5 a^{-7} -5 z^3 a^{-3} +12 z^3 a^{-5} -6 z^3 a^{-7} +3 z a^{-3} -3 z a^{-5} +3 a^{-3} z^{-1} -5 a^{-5} z^{-1} +2 a^{-7} z^{-1} (db)
Kauffman polynomial z^3 a^{-13} +3 z^4 a^{-12} -2 z^2 a^{-12} +4 z^5 a^{-11} -3 z^3 a^{-11} +4 z^6 a^{-10} -3 z^4 a^{-10} -2 z^2 a^{-10} + a^{-10} +4 z^7 a^{-9} -6 z^5 a^{-9} +4 z^8 a^{-8} -10 z^6 a^{-8} +4 z^4 a^{-8} +4 z^9 a^{-7} -16 z^7 a^{-7} +20 z^5 a^{-7} -12 z^3 a^{-7} +z a^{-7} +2 a^{-7} z^{-1} +2 z^{10} a^{-6} -6 z^8 a^{-6} -z^6 a^{-6} +6 z^4 a^{-6} +4 z^2 a^{-6} -5 a^{-6} +7 z^9 a^{-5} -38 z^7 a^{-5} +63 z^5 a^{-5} -35 z^3 a^{-5} -z a^{-5} +5 a^{-5} z^{-1} +2 z^{10} a^{-4} -9 z^8 a^{-4} +8 z^6 a^{-4} +2 z^4 a^{-4} +3 z^2 a^{-4} -5 a^{-4} +3 z^9 a^{-3} -18 z^7 a^{-3} +33 z^5 a^{-3} -19 z^3 a^{-3} -2 z a^{-3} +3 a^{-3} z^{-1} +z^8 a^{-2} -5 z^6 a^{-2} +6 z^4 a^{-2} -z^2 a^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-1012345678χ
22           11
20          2 -2
18         21 1
16        42  -2
14       32   1
12      54    -1
10     33     0
8    35      2
6   33       0
4  25        3
2 11         0
0 2          2
-21           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=4 i=6
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a15.gif

L11a15

L11a17.gif

L11a17