L11a17

From Knot Atlas
Jump to: navigation, search

L11a16.gif

L11a16

L11a18.gif

L11a18

Contents

L11a17.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a17 at Knotilus!


Link Presentations

[edit Notes on L11a17's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X4,19,1,20 X14,6,15,5 X8493 X16,10,17,9 X10,16,11,15 X20,12,21,11 X22,14,5,13 X12,22,13,21 X2,18,3,17
Gauss code {1, -11, 5, -3}, {4, -1, 2, -5, 6, -7, 8, -10, 9, -4, 7, -6, 11, -2, 3, -8, 10, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a17 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(2 t(2)^4-3 t(2)^3+3 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -q^{19/2}+4 q^{17/2}-7 q^{15/2}+12 q^{13/2}-15 q^{11/2}+16 q^{9/2}-17 q^{7/2}+13 q^{5/2}-10 q^{3/2}+5 \sqrt{q}-\frac{3}{\sqrt{q}}+\frac{1}{q^{3/2}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^7 a^{-3} +z^7 a^{-5} -z^5 a^{-1} +4 z^5 a^{-3} +3 z^5 a^{-5} -z^5 a^{-7} -3 z^3 a^{-1} +6 z^3 a^{-3} -2 z^3 a^{-7} -z a^{-1} +6 z a^{-3} -6 z a^{-5} +z a^{-7} +3 a^{-3} z^{-1} -5 a^{-5} z^{-1} +2 a^{-7} z^{-1} (db)
Kauffman polynomial -2 z^{10} a^{-4} -2 z^{10} a^{-6} -4 z^9 a^{-3} -9 z^9 a^{-5} -5 z^9 a^{-7} -4 z^8 a^{-2} -2 z^8 a^{-6} -6 z^8 a^{-8} -3 z^7 a^{-1} +10 z^7 a^{-3} +28 z^7 a^{-5} +9 z^7 a^{-7} -6 z^7 a^{-9} +11 z^6 a^{-2} +10 z^6 a^{-4} +9 z^6 a^{-6} +7 z^6 a^{-8} -4 z^6 a^{-10} -z^6+10 z^5 a^{-1} -5 z^5 a^{-3} -37 z^5 a^{-5} -12 z^5 a^{-7} +9 z^5 a^{-9} -z^5 a^{-11} -6 z^4 a^{-2} -13 z^4 a^{-4} -9 z^4 a^{-6} +2 z^4 a^{-8} +7 z^4 a^{-10} +3 z^4-8 z^3 a^{-1} -6 z^3 a^{-3} +13 z^3 a^{-5} +9 z^3 a^{-7} -z^3 a^{-9} +z^3 a^{-11} -2 z^2 a^{-4} -3 z^2 a^{-6} -2 z^2 a^{-8} -2 z^2 a^{-10} -z^2+2 z a^{-1} +8 z a^{-3} +7 z a^{-5} +z a^{-7} +5 a^{-4} +5 a^{-6} - a^{-10} -3 a^{-3} z^{-1} -5 a^{-5} z^{-1} -2 a^{-7} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-1012345678χ
20           11
18          3 -3
16         41 3
14        83  -5
12       74   3
10      98    -1
8     87     1
6    59      4
4   58       -3
2  27        5
0 13         -2
-2 2          2
-41           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a16.gif

L11a16

L11a18.gif

L11a18