L11a206

From Knot Atlas
Jump to: navigation, search

L11a205.gif

L11a205

L11a207.gif

L11a207

Contents

L11a206.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a206 at Knotilus!


Link Presentations

[edit Notes on L11a206's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X6718 X18,15,19,16 X16,6,17,5 X4,18,5,17 X22,11,7,12 X20,13,21,14 X14,19,15,20 X12,21,13,22
Gauss code {1, -2, 3, -7, 6, -4}, {4, -1, 2, -3, 8, -11, 9, -10, 5, -6, 7, -5, 10, -9, 11, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a206 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{3 t(2)^2 t(1)^2-3 t(2) t(1)^2-3 t(2)^2 t(1)+5 t(2) t(1)-3 t(1)-3 t(2)+3}{t(1) t(2)} (db)
Jones polynomial \frac{7}{q^{9/2}}-\frac{6}{q^{7/2}}+\frac{4}{q^{5/2}}-\frac{3}{q^{3/2}}+\frac{1}{q^{21/2}}-\frac{2}{q^{19/2}}+\frac{3}{q^{17/2}}-\frac{5}{q^{15/2}}+\frac{6}{q^{13/2}}-\frac{7}{q^{11/2}}-\sqrt{q}+\frac{1}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -z^3 a^9-2 z a^9+z^5 a^7+3 z^3 a^7+2 z a^7+z^5 a^5+2 z^3 a^5+z^5 a^3+3 z^3 a^3+2 z a^3+a^3 z^{-1} -z^3 a-3 z a-a z^{-1} (db)
Kauffman polynomial -z^6 a^{12}+4 z^4 a^{12}-3 z^2 a^{12}-2 z^7 a^{11}+8 z^5 a^{11}-7 z^3 a^{11}+z a^{11}-2 z^8 a^{10}+7 z^6 a^{10}-5 z^4 a^{10}+z^2 a^{10}-2 z^9 a^9+9 z^7 a^9-15 z^5 a^9+12 z^3 a^9-2 z a^9-z^{10} a^8+4 z^8 a^8-7 z^6 a^8+6 z^4 a^8-2 z^2 a^8-3 z^9 a^7+15 z^7 a^7-29 z^5 a^7+19 z^3 a^7-3 z a^7-z^{10} a^6+5 z^8 a^6-12 z^6 a^6+11 z^4 a^6-6 z^2 a^6-z^9 a^5+3 z^7 a^5-4 z^5 a^5-z^3 a^5+z a^5-z^8 a^4+2 z^6 a^4-2 z^4 a^4+z^2 a^4-z^7 a^3+z^5 a^3+3 z^3 a^3-3 z a^3+a^3 z^{-1} -z^6 a^2+2 z^4 a^2+z^2 a^2-a^2-z^5 a+4 z^3 a-4 z a+a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
2           11
0            0
-2         31 2
-4        21  -1
-6       42   2
-8      43    -1
-10     33     0
-12    34      1
-14   23       -1
-16  13        2
-18 12         -1
-20 1          1
-221           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a205.gif

L11a205

L11a207.gif

L11a207