L11a207

From Knot Atlas
Jump to: navigation, search

L11a206.gif

L11a206

L11a208.gif

L11a208

Contents

L11a207.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a207 at Knotilus!


Link Presentations

[edit Notes on L11a207's Link Presentations]

Planar diagram presentation X8192 X14,9,15,10 X6718 X22,15,7,16 X16,6,17,5 X4,22,5,21 X10,4,11,3 X20,18,21,17 X12,20,13,19 X18,12,19,11 X2,14,3,13
Gauss code {1, -11, 7, -6, 5, -3}, {3, -1, 2, -7, 10, -9, 11, -2, 4, -5, 8, -10, 9, -8, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a207 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{\left(u v^2-2 u v+u-v^2+2 v-2\right) \left(2 u v^2-2 u v+u-v^2+2 v-1\right)}{u v^2} (db)
Jones polynomial q^{15/2}-5 q^{13/2}+11 q^{11/2}-17 q^{9/2}+23 q^{7/2}-27 q^{5/2}+25 q^{3/2}-23 \sqrt{q}+\frac{16}{\sqrt{q}}-\frac{9}{q^{3/2}}+\frac{4}{q^{5/2}}-\frac{1}{q^{7/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z^5 a^{-5} +z^3 a^{-5} -z a^{-5} -z^7 a^{-3} -2 z^5 a^{-3} +z^3 a^{-3} +3 z a^{-3} - a^{-3} z^{-1} -z^7 a^{-1} +a z^5-3 z^5 a^{-1} +2 a z^3-4 z^3 a^{-1} +a z-2 z a^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial z^6 a^{-8} -z^4 a^{-8} +5 z^7 a^{-7} -9 z^5 a^{-7} +3 z^3 a^{-7} +10 z^8 a^{-6} -22 z^6 a^{-6} +12 z^4 a^{-6} +9 z^9 a^{-5} -12 z^7 a^{-5} -5 z^5 a^{-5} +7 z^3 a^{-5} -2 z a^{-5} +3 z^{10} a^{-4} +16 z^8 a^{-4} -47 z^6 a^{-4} +29 z^4 a^{-4} -2 z^2 a^{-4} +17 z^9 a^{-3} -26 z^7 a^{-3} +a^3 z^5-a^3 z^3+12 z^3 a^{-3} -5 z a^{-3} - a^{-3} z^{-1} +3 z^{10} a^{-2} +16 z^8 a^{-2} +4 a^2 z^6-39 z^6 a^{-2} -5 a^2 z^4+23 z^4 a^{-2} +2 a^2 z^2-2 z^2 a^{-2} + a^{-2} +8 z^9 a^{-1} +8 a z^7-z^7 a^{-1} -11 a z^5-16 z^5 a^{-1} +7 a z^3+16 z^3 a^{-1} -2 a z-5 z a^{-1} - a^{-1} z^{-1} +10 z^8-11 z^6+2 z^4+2 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14          4 4
12         71 -6
10        104  6
8       137   -6
6      1410    4
4     1214     2
2    1113      -2
0   613       7
-2  310        -7
-4 16         5
-6 3          -3
-81           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=2 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{14}
r=3 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a206.gif

L11a206

L11a208.gif

L11a208