L11a21

From Knot Atlas
Jump to: navigation, search

L11a20.gif

L11a20

L11a22.gif

L11a22

Contents

L11a21.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a21 at Knotilus!


Link Presentations

[edit Notes on L11a21's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X18,10,19,9 X20,14,21,13 X22,16,5,15 X14,22,15,21 X16,20,17,19 X8,18,9,17 X2536 X4,12,1,11
Gauss code {1, -10, 2, -11}, {10, -1, 3, -9, 4, -2, 11, -3, 5, -7, 6, -8, 9, -4, 8, -5, 7, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a21 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(t(2)^2+1\right) \left(2 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial q^{23/2}-4 q^{21/2}+9 q^{19/2}-13 q^{17/2}+17 q^{15/2}-18 q^{13/2}+17 q^{11/2}-15 q^{9/2}+9 q^{7/2}-6 q^{5/2}+2 q^{3/2}-\sqrt{q} (db)
Signature 5 (db)
HOMFLY-PT polynomial -z^7 a^{-5} -z^7 a^{-7} +z^5 a^{-3} -4 z^5 a^{-5} -3 z^5 a^{-7} +z^5 a^{-9} +4 z^3 a^{-3} -6 z^3 a^{-5} -2 z^3 a^{-7} +2 z^3 a^{-9} +5 z a^{-3} -5 z a^{-5} -z a^{-7} +z a^{-9} +2 a^{-3} z^{-1} -2 a^{-5} z^{-1} - a^{-7} z^{-1} + a^{-9} z^{-1} (db)
Kauffman polynomial z^4 a^{-14} +4 z^5 a^{-13} -z^3 a^{-13} +9 z^6 a^{-12} -9 z^4 a^{-12} +4 z^2 a^{-12} - a^{-12} +12 z^7 a^{-11} -16 z^5 a^{-11} +7 z^3 a^{-11} -z a^{-11} +10 z^8 a^{-10} -10 z^6 a^{-10} -4 z^4 a^{-10} +4 z^2 a^{-10} +5 z^9 a^{-9} +4 z^7 a^{-9} -22 z^5 a^{-9} +12 z^3 a^{-9} -2 z a^{-9} - a^{-9} z^{-1} +z^{10} a^{-8} +13 z^8 a^{-8} -33 z^6 a^{-8} +19 z^4 a^{-8} -6 z^2 a^{-8} +3 a^{-8} +7 z^9 a^{-7} -11 z^7 a^{-7} -8 z^5 a^{-7} +15 z^3 a^{-7} -4 z a^{-7} - a^{-7} z^{-1} +z^{10} a^{-6} +5 z^8 a^{-6} -21 z^6 a^{-6} +19 z^4 a^{-6} -4 z^2 a^{-6} +2 z^9 a^{-5} -2 z^7 a^{-5} -11 z^5 a^{-5} +20 z^3 a^{-5} -10 z a^{-5} +2 a^{-5} z^{-1} +2 z^8 a^{-4} -7 z^6 a^{-4} +6 z^4 a^{-4} +2 z^2 a^{-4} -3 a^{-4} +z^7 a^{-3} -5 z^5 a^{-3} +9 z^3 a^{-3} -7 z a^{-3} +2 a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456789χ
24           1-1
22          3 3
20         61 -5
18        73  4
16       106   -4
14      87    1
12     910     1
10    68      -2
8   39       6
6  36        -3
4 15         4
2 1          -1
01           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=4 i=6
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=6 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a20.gif

L11a20

L11a22.gif

L11a22