L11a22

From Knot Atlas
Jump to: navigation, search

L11a21.gif

L11a21

L11a23.gif

L11a23

Contents

L11a22.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a22 at Knotilus!


Link Presentations

[edit Notes on L11a22's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X18,10,19,9 X22,14,5,13 X20,16,21,15 X16,20,17,19 X14,22,15,21 X8,18,9,17 X2536 X4,12,1,11
Gauss code {1, -10, 2, -11}, {10, -1, 3, -9, 4, -2, 11, -3, 5, -8, 6, -7, 9, -4, 7, -6, 8, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a22 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(3 t(2)^2-4 t(2)+3\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial 12 q^{9/2}-11 q^{7/2}+7 q^{5/2}-5 q^{3/2}+q^{21/2}-3 q^{19/2}+6 q^{17/2}-8 q^{15/2}+11 q^{13/2}-13 q^{11/2}+2 \sqrt{q}-\frac{1}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial -z^5 a^{-3} -z^5 a^{-5} -z^5 a^{-7} +z^3 a^{-1} -2 z^3 a^{-3} -2 z^3 a^{-7} +z^3 a^{-9} +2 z a^{-1} -2 z a^{-3} +2 z a^{-5} -3 z a^{-7} +z a^{-9} + a^{-1} z^{-1} - a^{-3} z^{-1} + a^{-5} z^{-1} -2 a^{-7} z^{-1} + a^{-9} z^{-1} (db)
Kauffman polynomial -z^{10} a^{-6} -z^{10} a^{-8} -2 z^9 a^{-5} -6 z^9 a^{-7} -4 z^9 a^{-9} -2 z^8 a^{-4} -2 z^8 a^{-6} -5 z^8 a^{-8} -5 z^8 a^{-10} -2 z^7 a^{-3} +3 z^7 a^{-5} +21 z^7 a^{-7} +13 z^7 a^{-9} -3 z^7 a^{-11} -2 z^6 a^{-2} +11 z^6 a^{-6} +28 z^6 a^{-8} +18 z^6 a^{-10} -z^6 a^{-12} -z^5 a^{-1} -8 z^5 a^{-5} -32 z^5 a^{-7} -14 z^5 a^{-9} +9 z^5 a^{-11} +4 z^4 a^{-2} +3 z^4 a^{-4} -23 z^4 a^{-6} -44 z^4 a^{-8} -19 z^4 a^{-10} +3 z^4 a^{-12} +3 z^3 a^{-1} +7 z^3 a^{-3} +12 z^3 a^{-5} +20 z^3 a^{-7} +8 z^3 a^{-9} -4 z^3 a^{-11} -z^2 a^{-2} +17 z^2 a^{-6} +27 z^2 a^{-8} +10 z^2 a^{-10} -z^2 a^{-12} -3 z a^{-1} -5 z a^{-3} -7 z a^{-5} -8 z a^{-7} -3 z a^{-9} - a^{-2} -4 a^{-6} -7 a^{-8} -3 a^{-10} + a^{-1} z^{-1} + a^{-3} z^{-1} + a^{-5} z^{-1} +2 a^{-7} z^{-1} + a^{-9} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456789χ
22           1-1
20          2 2
18         41 -3
16        42  2
14       74   -3
12      64    2
10     67     1
8    56      -1
6   26       4
4  35        -2
2 14         3
0 1          -1
-21           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a21.gif

L11a21

L11a23.gif

L11a23