From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a212 at Knotilus!

Link Presentations

[edit Notes on L11a212's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X14,8,15,7 X6,13,1,14 X20,17,21,18 X16,5,17,6 X18,11,19,12 X12,19,13,20 X22,16,7,15 X4,21,5,22
Gauss code {1, -2, 3, -11, 7, -5}, {4, -1, 2, -3, 8, -9, 5, -4, 10, -7, 6, -8, 9, -6, 11, -10}
A Braid Representative
A Morse Link Presentation L11a212 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 u^2 v^4-6 u^2 v^3+5 u^2 v^2-2 u^2 v-2 u v^4+7 u v^3-11 u v^2+7 u v-2 u-2 v^3+5 v^2-6 v+2}{u v^2} (db)
Jones polynomial -\frac{16}{q^{9/2}}+\frac{11}{q^{7/2}}-\frac{7}{q^{5/2}}+\frac{3}{q^{3/2}}+\frac{1}{q^{23/2}}-\frac{4}{q^{21/2}}+\frac{8}{q^{19/2}}-\frac{13}{q^{17/2}}+\frac{17}{q^{15/2}}-\frac{19}{q^{13/2}}+\frac{18}{q^{11/2}}-\frac{1}{\sqrt{q}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^9 \left(-z^5\right)-2 a^9 z^3+a^7 z^7+3 a^7 z^5+2 a^7 z^3+a^7 z+a^7 z^{-1} +a^5 z^7+3 a^5 z^5+a^5 z^3-2 a^5 z-a^5 z^{-1} -a^3 z^5-3 a^3 z^3-2 a^3 z (db)
Kauffman polynomial -z^4 a^{14}-4 z^5 a^{13}+2 z^3 a^{13}-8 z^6 a^{12}+7 z^4 a^{12}-z^2 a^{12}-11 z^7 a^{11}+14 z^5 a^{11}-5 z^3 a^{11}-11 z^8 a^{10}+17 z^6 a^{10}-7 z^4 a^{10}-7 z^9 a^9+6 z^7 a^9+9 z^5 a^9-8 z^3 a^9+2 z a^9-2 z^{10} a^8-11 z^8 a^8+39 z^6 a^8-31 z^4 a^8+7 z^2 a^8-11 z^9 a^7+30 z^7 a^7-22 z^5 a^7+7 z^3 a^7-3 z a^7+a^7 z^{-1} -2 z^{10} a^6-3 z^8 a^6+25 z^6 a^6-28 z^4 a^6+10 z^2 a^6-a^6-4 z^9 a^5+12 z^7 a^5-9 z^5 a^5+3 z^3 a^5-3 z a^5+a^5 z^{-1} -3 z^8 a^4+11 z^6 a^4-12 z^4 a^4+4 z^2 a^4-z^7 a^3+4 z^5 a^3-5 z^3 a^3+2 z a^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
0           11
-2          2 -2
-4         51 4
-6        73  -4
-8       94   5
-10      97    -2
-12     109     1
-14    79      2
-16   610       -4
-18  38        5
-20 15         -4
-22 3          3
-241           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-6 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-5 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-4 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-3 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.