L11a213

From Knot Atlas
Jump to: navigation, search

L11a212.gif

L11a212

L11a214.gif

L11a214

Contents

L11a213.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a213 at Knotilus!


Link Presentations

[edit Notes on L11a213's Link Presentations]

Planar diagram presentation X8192 X12,3,13,4 X18,10,19,9 X22,20,7,19 X20,14,21,13 X14,22,15,21 X10,16,11,15 X16,6,17,5 X2738 X4,11,5,12 X6,18,1,17
Gauss code {1, -9, 2, -10, 8, -11}, {9, -1, 3, -7, 10, -2, 5, -6, 7, -8, 11, -3, 4, -5, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a213 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1)^2 t(2)^4-3 t(1) t(2)^4+2 t(2)^4-4 t(1)^2 t(2)^3+7 t(1) t(2)^3-5 t(2)^3+6 t(1)^2 t(2)^2-9 t(1) t(2)^2+6 t(2)^2-5 t(1)^2 t(2)+7 t(1) t(2)-4 t(2)+2 t(1)^2-3 t(1)+1}{t(1) t(2)^2} (db)
Jones polynomial q^{17/2}-4 q^{15/2}+9 q^{13/2}-14 q^{11/2}+19 q^{9/2}-21 q^{7/2}+20 q^{5/2}-18 q^{3/2}+12 \sqrt{q}-\frac{8}{\sqrt{q}}+\frac{3}{q^{3/2}}-\frac{1}{q^{5/2}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^3 a^{-7} +z a^{-7} -2 z^5 a^{-5} -4 z^3 a^{-5} -z a^{-5} + a^{-5} z^{-1} +z^7 a^{-3} +3 z^5 a^{-3} +3 z^3 a^{-3} -2 a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-5 z^3 a^{-1} +2 a z-3 z a^{-1} +a z^{-1} (db)
Kauffman polynomial -2 z^{10} a^{-2} -2 z^{10} a^{-4} -4 z^9 a^{-1} -12 z^9 a^{-3} -8 z^9 a^{-5} -6 z^8 a^{-2} -16 z^8 a^{-4} -13 z^8 a^{-6} -3 z^8-a z^7+9 z^7 a^{-1} +27 z^7 a^{-3} +4 z^7 a^{-5} -13 z^7 a^{-7} +33 z^6 a^{-2} +51 z^6 a^{-4} +19 z^6 a^{-6} -9 z^6 a^{-8} +10 z^6+4 a z^5+z^5 a^{-1} -9 z^5 a^{-3} +15 z^5 a^{-5} +17 z^5 a^{-7} -4 z^5 a^{-9} -35 z^4 a^{-2} -42 z^4 a^{-4} -8 z^4 a^{-6} +8 z^4 a^{-8} -z^4 a^{-10} -10 z^4-6 a z^3-10 z^3 a^{-1} -3 z^3 a^{-3} -8 z^3 a^{-5} -8 z^3 a^{-7} +z^3 a^{-9} +13 z^2 a^{-2} +18 z^2 a^{-4} +4 z^2 a^{-6} -3 z^2 a^{-8} +2 z^2+4 a z+3 z a^{-1} -2 z a^{-3} +z a^{-7} -3 a^{-2} -5 a^{-4} -2 a^{-6} +1-a z^{-1} +2 a^{-3} z^{-1} + a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          3 3
14         61 -5
12        83  5
10       116   -5
8      108    2
6     1011     1
4    810      -2
2   511       6
0  37        -4
-2 16         5
-4 2          -2
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a212.gif

L11a212

L11a214.gif

L11a214