L11a218

From Knot Atlas
Jump to: navigation, search

L11a217.gif

L11a217

L11a219.gif

L11a219

Contents

L11a218.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a218 at Knotilus!


Link Presentations

[edit Notes on L11a218's Link Presentations]

Planar diagram presentation X8192 X12,4,13,3 X20,10,21,9 X22,12,7,11 X10,22,11,21 X16,6,17,5 X18,16,19,15 X14,20,15,19 X2738 X4,14,5,13 X6,18,1,17
Gauss code {1, -9, 2, -10, 6, -11}, {9, -1, 3, -5, 4, -2, 10, -8, 7, -6, 11, -7, 8, -3, 5, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a218 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 u^2 v^4-3 u^2 v^3+3 u^2 v^2-3 u^2 v+u^2-3 u v^4+5 u v^3-5 u v^2+5 u v-3 u+v^4-3 v^3+3 v^2-3 v+2}{u v^2} (db)
Jones polynomial q^{23/2}-3 q^{21/2}+6 q^{19/2}-10 q^{17/2}+13 q^{15/2}-14 q^{13/2}+14 q^{11/2}-12 q^{9/2}+8 q^{7/2}-6 q^{5/2}+2 q^{3/2}-\sqrt{q} (db)
Signature 5 (db)
HOMFLY-PT polynomial z^5 a^{-9} +3 z^3 a^{-9} +2 z a^{-9} -z^7 a^{-7} -4 z^5 a^{-7} -5 z^3 a^{-7} -2 z a^{-7} + a^{-7} z^{-1} -z^7 a^{-5} -4 z^5 a^{-5} -5 z^3 a^{-5} -4 z a^{-5} -3 a^{-5} z^{-1} +z^5 a^{-3} +4 z^3 a^{-3} +5 z a^{-3} +2 a^{-3} z^{-1} (db)
Kauffman polynomial -z^{10} a^{-6} -z^{10} a^{-8} -2 z^9 a^{-5} -6 z^9 a^{-7} -4 z^9 a^{-9} -2 z^8 a^{-4} -3 z^8 a^{-6} -8 z^8 a^{-8} -7 z^8 a^{-10} -z^7 a^{-3} +3 z^7 a^{-5} +14 z^7 a^{-7} +3 z^7 a^{-9} -7 z^7 a^{-11} +7 z^6 a^{-4} +16 z^6 a^{-6} +29 z^6 a^{-8} +15 z^6 a^{-10} -5 z^6 a^{-12} +5 z^5 a^{-3} +9 z^5 a^{-5} -3 z^5 a^{-7} +8 z^5 a^{-9} +12 z^5 a^{-11} -3 z^5 a^{-13} -5 z^4 a^{-4} -11 z^4 a^{-6} -28 z^4 a^{-8} -16 z^4 a^{-10} +5 z^4 a^{-12} -z^4 a^{-14} -9 z^3 a^{-3} -17 z^3 a^{-5} -5 z^3 a^{-7} -10 z^3 a^{-9} -10 z^3 a^{-11} +3 z^3 a^{-13} -3 z^2 a^{-4} -2 z^2 a^{-6} +9 z^2 a^{-8} +6 z^2 a^{-10} -z^2 a^{-12} +z^2 a^{-14} +7 z a^{-3} +10 z a^{-5} +3 z a^{-7} +2 z a^{-9} +2 z a^{-11} +3 a^{-4} +3 a^{-6} + a^{-8} -2 a^{-3} z^{-1} -3 a^{-5} z^{-1} - a^{-7} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456789χ
24           1-1
22          2 2
20         41 -3
18        62  4
16       74   -3
14      76    1
12     77     0
10    57      -2
8   48       4
6  24        -2
4 15         4
2 1          -1
01           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=4 i=6
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a217.gif

L11a217

L11a219.gif

L11a219