L11a217

From Knot Atlas
Jump to: navigation, search

L11a216.gif

L11a216

L11a218.gif

L11a218

Contents

L11a217.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a217 at Knotilus!


Link Presentations

[edit Notes on L11a217's Link Presentations]

Planar diagram presentation X8192 X12,3,13,4 X16,6,17,5 X22,13,7,14 X18,15,19,16 X14,21,15,22 X20,10,21,9 X4,18,5,17 X10,20,11,19 X2738 X6,11,1,12
Gauss code {1, -10, 2, -8, 3, -11}, {10, -1, 7, -9, 11, -2, 4, -6, 5, -3, 8, -5, 9, -7, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a217 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 u^2 v^3-7 u^2 v^2+6 u^2 v-u^2+u v^4-9 u v^3+17 u v^2-9 u v+u-v^4+6 v^3-7 v^2+2 v}{u v^2} (db)
Jones polynomial -\frac{15}{q^{9/2}}-q^{7/2}+\frac{19}{q^{7/2}}+3 q^{5/2}-\frac{23}{q^{5/2}}-8 q^{3/2}+\frac{22}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{4}{q^{13/2}}+\frac{9}{q^{11/2}}+14 \sqrt{q}-\frac{19}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^7 (-z)+3 a^5 z^3+2 a^5 z+a^5 z^{-1} -2 a^3 z^5-3 a^3 z^3-5 a^3 z-2 a^3 z^{-1} -z a^{-3} -a z^5+3 a z^3+2 z^3 a^{-1} +5 a z+2 a z^{-1} -z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -2 a^4 z^{10}-2 a^2 z^{10}-6 a^5 z^9-12 a^3 z^9-6 a z^9-7 a^6 z^8-13 a^4 z^8-14 a^2 z^8-8 z^8-4 a^7 z^7+5 a^5 z^7+16 a^3 z^7+a z^7-6 z^7 a^{-1} -a^8 z^6+15 a^6 z^6+39 a^4 z^6+39 a^2 z^6-3 z^6 a^{-2} +13 z^6+9 a^7 z^5+13 a^5 z^5+9 a^3 z^5+15 a z^5+9 z^5 a^{-1} -z^5 a^{-3} +2 a^8 z^4-8 a^6 z^4-30 a^4 z^4-37 a^2 z^4+4 z^4 a^{-2} -13 z^4-6 a^7 z^3-14 a^5 z^3-22 a^3 z^3-23 a z^3-7 z^3 a^{-1} +2 z^3 a^{-3} -a^8 z^2+2 a^6 z^2+8 a^4 z^2+13 a^2 z^2-z^2 a^{-2} +7 z^2+2 a^7 z+5 a^5 z+10 a^3 z+12 a z+4 z a^{-1} -z a^{-3} -a^2-a^5 z^{-1} -2 a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
8           11
6          2 -2
4         61 5
2        82  -6
0       116   5
-2      129    -3
-4     1110     1
-6    913      4
-8   610       -4
-10  39        6
-12 16         -5
-14 3          3
-161           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-2 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a216.gif

L11a216

L11a218.gif

L11a218