L11a224

From Knot Atlas
Jump to: navigation, search

L11a223.gif

L11a223

L11a225.gif

L11a225

Contents

L11a224.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a224 at Knotilus!


Link Presentations

[edit Notes on L11a224's Link Presentations]

Planar diagram presentation X8192 X16,6,17,5 X18,10,19,9 X10,20,11,19 X2,11,3,12 X12,3,13,4 X4758 X20,14,21,13 X22,16,7,15 X6,18,1,17 X14,22,15,21
Gauss code {1, -5, 6, -7, 2, -10}, {7, -1, 3, -4, 5, -6, 8, -11, 9, -2, 10, -3, 4, -8, 11, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a224 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v^6-2 u^2 v^5+3 u^2 v^4-3 u^2 v^3+2 u^2 v^2-u^2 v-u v^6+4 u v^5-6 u v^4+7 u v^3-6 u v^2+4 u v-u-v^5+2 v^4-3 v^3+3 v^2-2 v+1}{u v^3} (db)
Jones polynomial q^{17/2}-3 q^{15/2}+7 q^{13/2}-11 q^{11/2}+15 q^{9/2}-17 q^{7/2}+16 q^{5/2}-15 q^{3/2}+10 \sqrt{q}-\frac{7}{\sqrt{q}}+\frac{3}{q^{3/2}}-\frac{1}{q^{5/2}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^7 a^{-5} +5 z^5 a^{-5} +9 z^3 a^{-5} +7 z a^{-5} +2 a^{-5} z^{-1} -z^9 a^{-3} -7 z^7 a^{-3} -19 z^5 a^{-3} -25 z^3 a^{-3} -16 z a^{-3} -5 a^{-3} z^{-1} +z^7 a^{-1} +5 z^5 a^{-1} +9 z^3 a^{-1} +8 z a^{-1} +3 a^{-1} z^{-1} (db)
Kauffman polynomial z^4 a^{-10} -z^2 a^{-10} +3 z^5 a^{-9} -2 z^3 a^{-9} +6 z^6 a^{-8} -7 z^4 a^{-8} +5 z^2 a^{-8} - a^{-8} +8 z^7 a^{-7} -11 z^5 a^{-7} +7 z^3 a^{-7} +8 z^8 a^{-6} -12 z^6 a^{-6} +6 z^4 a^{-6} +6 z^9 a^{-5} -10 z^7 a^{-5} +10 z^5 a^{-5} -15 z^3 a^{-5} +9 z a^{-5} -2 a^{-5} z^{-1} +2 z^{10} a^{-4} +6 z^8 a^{-4} -26 z^6 a^{-4} +27 z^4 a^{-4} -18 z^2 a^{-4} +5 a^{-4} +10 z^9 a^{-3} -32 z^7 a^{-3} +40 z^5 a^{-3} -37 z^3 a^{-3} +20 z a^{-3} -5 a^{-3} z^{-1} +2 z^{10} a^{-2} +z^8 a^{-2} -19 z^6 a^{-2} +24 z^4 a^{-2} -14 z^2 a^{-2} +5 a^{-2} +4 z^9 a^{-1} +a z^7-13 z^7 a^{-1} -4 a z^5+12 z^5 a^{-1} +5 a z^3-8 z^3 a^{-1} -2 a z+9 z a^{-1} -3 a^{-1} z^{-1} +3 z^8-11 z^6+11 z^4-2 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          2 2
14         51 -4
12        62  4
10       95   -4
8      86    2
6     89     1
4    78      -1
2   49       5
0  36        -3
-2 15         4
-4 2          -2
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a223.gif

L11a223

L11a225.gif

L11a225