L11a228

From Knot Atlas
Jump to: navigation, search

L11a227.gif

L11a227

L11a229.gif

L11a229

Contents

L11a228.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a228 at Knotilus!


Link Presentations

[edit Notes on L11a228's Link Presentations]

Planar diagram presentation X8192 X16,6,17,5 X20,10,21,9 X10,22,11,21 X18,16,19,15 X14,20,15,19 X2,11,3,12 X12,3,13,4 X4758 X22,14,7,13 X6,18,1,17
Gauss code {1, -7, 8, -9, 2, -11}, {9, -1, 3, -4, 7, -8, 10, -6, 5, -2, 11, -5, 6, -3, 4, -10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a228 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 t(1)^2 t(2)^4-2 t(1) t(2)^4-5 t(1)^2 t(2)^3+9 t(1) t(2)^3-3 t(2)^3+6 t(1)^2 t(2)^2-13 t(1) t(2)^2+6 t(2)^2-3 t(1)^2 t(2)+9 t(1) t(2)-5 t(2)-2 t(1)+2}{t(1) t(2)^2} (db)
Jones polynomial q^{15/2}-4 q^{13/2}+9 q^{11/2}-14 q^{9/2}+19 q^{7/2}-22 q^{5/2}+21 q^{3/2}-19 \sqrt{q}+\frac{13}{\sqrt{q}}-\frac{8}{q^{3/2}}+\frac{3}{q^{5/2}}-\frac{1}{q^{7/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z^5 a^{-5} +2 z^3 a^{-5} +z a^{-5} -z^7 a^{-3} -3 z^5 a^{-3} -2 z^3 a^{-3} +2 z a^{-3} + a^{-3} z^{-1} -z^7 a^{-1} +a z^5-4 z^5 a^{-1} +3 a z^3-8 z^3 a^{-1} +4 a z-8 z a^{-1} +2 a z^{-1} -3 a^{-1} z^{-1} (db)
Kauffman polynomial z^6 a^{-8} -2 z^4 a^{-8} +z^2 a^{-8} +4 z^7 a^{-7} -9 z^5 a^{-7} +5 z^3 a^{-7} +7 z^8 a^{-6} -16 z^6 a^{-6} +10 z^4 a^{-6} -2 z^2 a^{-6} +6 z^9 a^{-5} -8 z^7 a^{-5} -z^5 a^{-5} -z^3 a^{-5} +z a^{-5} +2 z^{10} a^{-4} +10 z^8 a^{-4} -26 z^6 a^{-4} +11 z^4 a^{-4} +2 z^2 a^{-4} - a^{-4} +11 z^9 a^{-3} -15 z^7 a^{-3} +a^3 z^5-2 z^5 a^{-3} -2 a^3 z^3+9 z^3 a^{-3} +a^3 z-5 z a^{-3} + a^{-3} z^{-1} +2 z^{10} a^{-2} +10 z^8 a^{-2} +3 a^2 z^6-20 z^6 a^{-2} -4 a^2 z^4+5 z^4 a^{-2} +a^2 z^2+8 z^2 a^{-2} -3 a^{-2} +5 z^9 a^{-1} +6 a z^7+3 z^7 a^{-1} -10 a z^5-21 z^5 a^{-1} +10 a z^3+27 z^3 a^{-1} -7 a z-14 z a^{-1} +2 a z^{-1} +3 a^{-1} z^{-1} +7 z^8-8 z^6+2 z^4+4 z^2-3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14          3 3
12         61 -5
10        83  5
8       116   -5
6      118    3
4     1011     1
2    911      -2
0   511       6
-2  38        -5
-4 16         5
-6 2          -2
-81           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a227.gif

L11a227

L11a229.gif

L11a229