# L11a229

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a229 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{u^2 v^6-3 u^2 v^5+5 u^2 v^4-5 u^2 v^3+3 u^2 v^2+3 u v^5-7 u v^4+9 u v^3-7 u v^2+3 u v+3 v^4-5 v^3+5 v^2-3 v+1}{u v^3}$ (db) Jones polynomial $q^{9/2}-3 q^{7/2}+8 q^{5/2}-13 q^{3/2}+17 \sqrt{q}-\frac{21}{\sqrt{q}}+\frac{20}{q^{3/2}}-\frac{18}{q^{5/2}}+\frac{13}{q^{7/2}}-\frac{8}{q^{9/2}}+\frac{3}{q^{11/2}}-\frac{1}{q^{13/2}}$ (db) Signature -1 (db) HOMFLY-PT polynomial $-a z^9+a^3 z^7-7 a z^7+z^7 a^{-1} +5 a^3 z^5-20 a z^5+5 z^5 a^{-1} +10 a^3 z^3-29 a z^3+10 z^3 a^{-1} +9 a^3 z-21 a z+9 z a^{-1} +3 a^3 z^{-1} -5 a z^{-1} +2 a^{-1} z^{-1}$ (db) Kauffman polynomial $a^7 z^5-2 a^7 z^3+a^7 z+3 a^6 z^6-4 a^6 z^4+a^6 z^2+6 a^5 z^7-10 a^5 z^5+8 a^5 z^3-3 a^5 z+7 a^4 z^8-9 a^4 z^6+z^6 a^{-4} +4 a^4 z^4-3 z^4 a^{-4} +3 z^2 a^{-4} - a^{-4} +6 a^3 z^9-8 a^3 z^7+3 z^7 a^{-3} +12 a^3 z^5-7 z^5 a^{-3} -17 a^3 z^3+4 z^3 a^{-3} +12 a^3 z-3 a^3 z^{-1} +2 a^2 z^{10}+9 a^2 z^8+5 z^8 a^{-2} -25 a^2 z^6-10 z^6 a^{-2} +28 a^2 z^4+4 z^4 a^{-2} -18 a^2 z^2+5 a^2+11 a z^9+5 z^9 a^{-1} -25 a z^7-8 z^7 a^{-1} +35 a z^5+5 z^5 a^{-1} -41 a z^3-10 z^3 a^{-1} +25 a z+9 z a^{-1} -5 a z^{-1} -2 a^{-1} z^{-1} +2 z^{10}+7 z^8-24 z^6+27 z^4-20 z^2+5$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-6-5-4-3-2-1012345χ
10           1-1
8          2 2
6         61 -5
4        72  5
2       106   -4
0      117    4
-2     1011     1
-4    810      -2
-6   510       5
-8  38        -5
-10  5         5
-1213          -2
-141           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-2$ $i=0$ $r=-6$ ${\mathbb Z}$ ${\mathbb Z}$ $r=-5$ ${\mathbb Z}^{3}$ $r=-4$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=-3$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=-2$ ${\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=-1$ ${\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10}$ ${\mathbb Z}^{10}$ $r=0$ ${\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10}$ ${\mathbb Z}^{11}$ $r=1$ ${\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10}$ ${\mathbb Z}^{10}$ $r=2$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7}$ ${\mathbb Z}^{7}$ $r=3$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=4$ ${\mathbb Z}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=5$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.