L11a24

From Knot Atlas
Jump to: navigation, search

L11a23.gif

L11a23

L11a25.gif

L11a25

Contents

L11a24.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a24 at Knotilus!


Link Presentations

[edit Notes on L11a24's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,8,15,7 X18,11,19,12 X22,19,5,20 X20,15,21,16 X16,21,17,22 X12,17,13,18 X8,14,9,13 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 3, -9, 11, -2, 4, -8, 9, -3, 6, -7, 8, -4, 5, -6, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a24 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{3 u v^4-10 u v^3+12 u v^2-7 u v+u+v^5-7 v^4+12 v^3-10 v^2+3 v}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{8}{q^{3/2}}+\frac{14}{q^{5/2}}-\frac{19}{q^{7/2}}+\frac{21}{q^{9/2}}-\frac{22}{q^{11/2}}+\frac{18}{q^{13/2}}-\frac{14}{q^{15/2}}+\frac{8}{q^{17/2}}-\frac{3}{q^{19/2}}+\frac{1}{q^{21/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^{11} z^{-1} +4 a^9 z+3 a^9 z^{-1} -6 a^7 z^3-9 a^7 z-3 a^7 z^{-1} +3 a^5 z^5+7 a^5 z^3+7 a^5 z+2 a^5 z^{-1} +a^3 z^5-a^3 z^3-3 a^3 z-a^3 z^{-1} -a z^3-a z (db)
Kauffman polynomial -z^6 a^{12}+3 z^4 a^{12}-3 z^2 a^{12}+a^{12}-3 z^7 a^{11}+7 z^5 a^{11}-6 z^3 a^{11}+3 z a^{11}-a^{11} z^{-1} -5 z^8 a^{10}+9 z^6 a^{10}-3 z^4 a^{10}-2 z^2 a^{10}+2 a^{10}-4 z^9 a^9-2 z^7 a^9+21 z^5 a^9-21 z^3 a^9+11 z a^9-3 a^9 z^{-1} -z^{10} a^8-16 z^8 a^8+42 z^6 a^8-34 z^4 a^8+12 z^2 a^8-9 z^9 a^7+2 z^7 a^7+31 z^5 a^7-36 z^3 a^7+15 z a^7-3 a^7 z^{-1} -z^{10} a^6-19 z^8 a^6+48 z^6 a^6-45 z^4 a^6+18 z^2 a^6-2 a^6-5 z^9 a^5-5 z^7 a^5+27 z^5 a^5-31 z^3 a^5+13 z a^5-2 a^5 z^{-1} -8 z^8 a^4+13 z^6 a^4-13 z^4 a^4+6 z^2 a^4-6 z^7 a^3+9 z^5 a^3-8 z^3 a^3+5 z a^3-a^3 z^{-1} -3 z^6 a^2+4 z^4 a^2-z^2 a^2-z^5 a+2 z^3 a-z a (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
2           11
0          2 -2
-2         61 5
-4        93  -6
-6       105   5
-8      119    -2
-10     1110     1
-12    812      4
-14   610       -4
-16  28        6
-18 16         -5
-20 2          2
-221           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-5 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-4 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=-3 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a23.gif

L11a23

L11a25.gif

L11a25