L11a315

From Knot Atlas
Jump to: navigation, search

L11a314.gif

L11a314

L11a316.gif

L11a316

Contents

L11a315.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a315 at Knotilus!


Link Presentations

[edit Notes on L11a315's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X22,17,9,18 X20,9,21,10 X6,13,7,14 X14,7,15,8 X8,15,1,16 X4,19,5,20 X18,5,19,6 X16,21,17,22
Gauss code {1, -2, 3, -9, 10, -6, 7, -8}, {5, -1, 2, -3, 6, -7, 8, -11, 4, -10, 9, -5, 11, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a315 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 u^3 v^4-2 u^3 v^3+u^3 v^2+u^2 v^5-4 u^2 v^4+7 u^2 v^3-5 u^2 v^2+2 u^2 v+2 u v^4-5 u v^3+7 u v^2-4 u v+u+v^3-2 v^2+2 v}{u^{3/2} v^{5/2}} (db)
Jones polynomial \frac{2}{q^{9/2}}-\frac{1}{q^{7/2}}+\frac{1}{q^{29/2}}-\frac{3}{q^{27/2}}+\frac{6}{q^{25/2}}-\frac{11}{q^{23/2}}+\frac{14}{q^{21/2}}-\frac{15}{q^{19/2}}+\frac{15}{q^{17/2}}-\frac{13}{q^{15/2}}+\frac{9}{q^{13/2}}-\frac{6}{q^{11/2}} (db)
Signature -7 (db)
HOMFLY-PT polynomial -z^3 a^{13}-3 z a^{13}-a^{13} z^{-1} +3 z^5 a^{11}+12 z^3 a^{11}+13 z a^{11}+3 a^{11} z^{-1} -2 z^7 a^9-10 z^5 a^9-16 z^3 a^9-10 z a^9-2 a^9 z^{-1} -z^7 a^7-5 z^5 a^7-8 z^3 a^7-4 z a^7 (db)
Kauffman polynomial a^{18} z^4-a^{18} z^2+3 a^{17} z^5-3 a^{17} z^3+a^{17} z+5 a^{16} z^6-4 a^{16} z^4+a^{16} z^2+7 a^{15} z^7-9 a^{15} z^5+5 a^{15} z^3+a^{15} z+7 a^{14} z^8-11 a^{14} z^6+8 a^{14} z^4-3 a^{14} z^2+a^{14}+4 a^{13} z^9-13 a^{13} z^5+9 a^{13} z^3+a^{13} z-a^{13} z^{-1} +a^{12} z^{10}+10 a^{12} z^8-35 a^{12} z^6+39 a^{12} z^4-22 a^{12} z^2+3 a^{12}+7 a^{11} z^9-19 a^{11} z^7+20 a^{11} z^5-24 a^{11} z^3+16 a^{11} z-3 a^{11} z^{-1} +a^{10} z^{10}+5 a^{10} z^8-26 a^{10} z^6+32 a^{10} z^4-17 a^{10} z^2+3 a^{10}+3 a^9 z^9-11 a^9 z^7+16 a^9 z^5-17 a^9 z^3+11 a^9 z-2 a^9 z^{-1} +2 a^8 z^8-7 a^8 z^6+6 a^8 z^4+a^7 z^7-5 a^7 z^5+8 a^7 z^3-4 a^7 z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-6           11
-8          21-1
-10         4  4
-12        52  -3
-14       84   4
-16      75    -2
-18     88     0
-20    67      1
-22   58       -3
-24  27        5
-26 14         -3
-28 2          2
-301           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-8 i=-6
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-8 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=-7 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-6 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-5 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a314.gif

L11a314

L11a316.gif

L11a316