L11a397

From Knot Atlas
Jump to: navigation, search

L11a396.gif

L11a396

L11a398.gif

L11a398

Contents

L11a397.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a397 at Knotilus!


Link Presentations

[edit Notes on L11a397's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X22,12,9,11 X20,14,21,13 X18,16,19,15 X8,18,5,17 X16,8,17,7 X14,20,15,19 X12,22,13,21 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 7, -6}, {11, -2, 3, -9, 4, -8, 5, -7, 6, -5, 8, -4, 9, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a397 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-3 t(2) t(1)+3 t(2) t(3) t(1)-3 t(3) t(1)+4 t(1)+3 t(2)-4 t(2) t(3)+3 t(3)-3}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)}} (db)
Jones polynomial -q^7+3 q^6-4 q^5+5 q^4-7 q^3+8 q^2-7 q+7-4 q^{-1} +4 q^{-2} - q^{-3} + q^{-4} (db)
Signature 0 (db)
HOMFLY-PT polynomial -z^2 a^{-6} +z^4 a^{-4} +a^4 z^{-2} +z^2 a^{-4} +a^4+z^4 a^{-2} -2 a^2 z^2-2 a^2 z^{-2} -3 a^2+z^4+z^2+ z^{-2} +2 (db)
Kauffman polynomial z^7 a^{-7} -4 z^5 a^{-7} +3 z^3 a^{-7} +3 z^8 a^{-6} -14 z^6 a^{-6} +16 z^4 a^{-6} -3 z^2 a^{-6} +3 z^9 a^{-5} -14 z^7 a^{-5} +18 z^5 a^{-5} -7 z^3 a^{-5} +z^{10} a^{-4} -z^8 a^{-4} -8 z^6 a^{-4} +a^4 z^4+10 z^4 a^{-4} -3 a^4 z^2-2 z^2 a^{-4} -a^4 z^{-2} +3 a^4+4 z^9 a^{-3} -17 z^7 a^{-3} +a^3 z^5+22 z^5 a^{-3} -10 z^3 a^{-3} -3 a^3 z+2 a^3 z^{-1} +z^{10} a^{-2} -3 z^8 a^{-2} +a^2 z^6+5 z^6 a^{-2} +2 a^2 z^4-6 z^4 a^{-2} -6 a^2 z^2+z^2 a^{-2} -2 a^2 z^{-2} +5 a^2+z^9 a^{-1} +a z^7-z^7 a^{-1} +a z^5-3 a z+2 a z^{-1} +z^8+z^4-3 z^2- z^{-2} +3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
15           1-1
13          2 2
11         21 -1
9        32  1
7       42   -2
5      43    1
3     34     1
1    44      0
-1   36       3
-3  11        0
-5  3         3
-711          0
-91           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2 {\mathbb Z}^{4}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a396.gif

L11a396

L11a398.gif

L11a398