L11a415

From Knot Atlas
Jump to: navigation, search

L11a414.gif

L11a414

L11a416.gif

L11a416

Contents

L11a415.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a415 at Knotilus!


Link Presentations

[edit Notes on L11a415's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X18,10,19,9 X16,8,17,7 X22,16,11,15 X20,14,21,13 X14,22,15,21 X10,18,5,17 X8,20,9,19 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 4, -9, 3, -8}, {11, -2, 6, -7, 5, -4, 8, -3, 9, -6, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a415 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-t(1) t(3)^4+t(1) t(2) t(3)^4-2 t(2) t(3)^4+t(3)^4+t(1) t(2)^2 t(3)^3-2 t(2)^2 t(3)^3+2 t(1) t(3)^3-3 t(1) t(2) t(3)^3+4 t(2) t(3)^3-t(3)^3-t(1) t(2)^2 t(3)^2+2 t(2)^2 t(3)^2-2 t(1) t(3)^2+4 t(1) t(2) t(3)^2-4 t(2) t(3)^2+t(3)^2+t(1) t(2)^2 t(3)-2 t(2)^2 t(3)+2 t(1) t(3)-4 t(1) t(2) t(3)+3 t(2) t(3)-t(3)-t(1) t(2)^2+t(2)^2+2 t(1) t(2)-t(2)}{\sqrt{t(1)} t(2) t(3)^2} (db)
Jones polynomial -q^8+3 q^7-7 q^6+11 q^5-14 q^4+17 q^3+ q^{-3} -15 q^2-2 q^{-2} +14 q+6 q^{-1} -9 (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^4 a^{-6} -2 z^2 a^{-6} - a^{-6} z^{-2} -2 a^{-6} +z^6 a^{-4} +3 z^4 a^{-4} +6 z^2 a^{-4} +4 a^{-4} z^{-2} +8 a^{-4} +z^6 a^{-2} +z^4 a^{-2} +a^2 z^2-4 z^2 a^{-2} -5 a^{-2} z^{-2} +2 a^2-8 a^{-2} -2 z^4-4 z^2+2 z^{-2} (db)
Kauffman polynomial z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +6 z^9 a^{-3} +4 z^9 a^{-5} +5 z^8 a^{-2} +9 z^8 a^{-4} +7 z^8 a^{-6} +3 z^8+2 a z^7+2 z^7 a^{-1} -8 z^7 a^{-3} -2 z^7 a^{-5} +6 z^7 a^{-7} +a^2 z^6-17 z^6 a^{-2} -30 z^6 a^{-4} -18 z^6 a^{-6} +3 z^6 a^{-8} -7 z^6-5 a z^5-16 z^5 a^{-1} -9 z^5 a^{-3} -13 z^5 a^{-5} -14 z^5 a^{-7} +z^5 a^{-9} -4 a^2 z^4+27 z^4 a^{-2} +44 z^4 a^{-4} +22 z^4 a^{-6} -5 z^4 a^{-8} +6 z^4+2 a z^3+21 z^3 a^{-1} +35 z^3 a^{-3} +30 z^3 a^{-5} +12 z^3 a^{-7} -2 z^3 a^{-9} +5 a^2 z^2-33 z^2 a^{-2} -33 z^2 a^{-4} -12 z^2 a^{-6} -7 z^2+a z-16 z a^{-1} -33 z a^{-3} -21 z a^{-5} -5 z a^{-7} -2 a^2+20 a^{-2} +17 a^{-4} +4 a^{-6} +6+5 a^{-1} z^{-1} +9 a^{-3} z^{-1} +5 a^{-5} z^{-1} + a^{-7} z^{-1} -5 a^{-2} z^{-2} -4 a^{-4} z^{-2} - a^{-6} z^{-2} -2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          2 2
13         51 -4
11        62  4
9       85   -3
7      96    3
5     810     2
3    67      -1
1   49       5
-1  25        -3
-3  4         4
-512          -1
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a414.gif

L11a414

L11a416.gif

L11a416