L11a425

From Knot Atlas
Jump to: navigation, search

L11a424.gif

L11a424

L11a426.gif

L11a426

Contents

L11a425.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a425 at Knotilus!


Link Presentations

[edit Notes on L11a425's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X16,7,17,8 X20,10,21,9 X18,12,19,11 X22,20,11,19 X8,15,9,16 X10,22,5,21 X14,18,15,17 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 3, -7, 4, -8}, {5, -2, 11, -9, 7, -3, 9, -5, 6, -4, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a425 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 u v^2 w^2-3 u v^2 w+u v^2-5 u v w^2+7 u v w-3 u v+3 u w^2-5 u w+2 u-2 v^2 w^2+5 v^2 w-3 v^2+3 v w^2-7 v w+5 v-w^2+3 w-2}{\sqrt{u} v w} (db)
Jones polynomial -q^8+4 q^7-9 q^6+14 q^5-18 q^4+21 q^3-19 q^2+17 q-11+7 q^{-1} -2 q^{-2} + q^{-3} (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^4 a^{-6} -z^2 a^{-6} - a^{-6} +z^6 a^{-4} +2 z^4 a^{-4} +3 z^2 a^{-4} +2 a^{-4} +z^6 a^{-2} +z^4 a^{-2} +a^2 z^2+a^2 z^{-2} + a^{-2} z^{-2} +2 a^2+ a^{-2} -2 z^4-4 z^2-2 z^{-2} -4 (db)
Kauffman polynomial z^5 a^{-9} -z^3 a^{-9} +4 z^6 a^{-8} -5 z^4 a^{-8} +z^2 a^{-8} +8 z^7 a^{-7} -13 z^5 a^{-7} +7 z^3 a^{-7} -2 z a^{-7} +9 z^8 a^{-6} -14 z^6 a^{-6} +9 z^4 a^{-6} -5 z^2 a^{-6} +2 a^{-6} +5 z^9 a^{-5} +4 z^7 a^{-5} -21 z^5 a^{-5} +17 z^3 a^{-5} -4 z a^{-5} +z^{10} a^{-4} +16 z^8 a^{-4} -39 z^6 a^{-4} +37 z^4 a^{-4} -18 z^2 a^{-4} +4 a^{-4} +8 z^9 a^{-3} -7 z^7 a^{-3} -6 z^5 a^{-3} +5 z^3 a^{-3} +z^{10} a^{-2} +10 z^8 a^{-2} +a^2 z^6-25 z^6 a^{-2} -4 a^2 z^4+21 z^4 a^{-2} +6 a^2 z^2-7 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -4 a^2-2 a^{-2} +3 z^9 a^{-1} +2 a z^7-z^7 a^{-1} -4 a z^5-3 z^5 a^{-1} -4 z^3 a^{-1} +4 a z+6 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +3 z^8-3 z^6-6 z^4+11 z^2+2 z^{-2} -7 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         61 -5
11        83  5
9       106   -4
7      118    3
5     911     2
3    810      -2
1   511       6
-1  26        -4
-3 16         5
-5 1          -1
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a424.gif

L11a424

L11a426.gif

L11a426