From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a426 at Knotilus!

Link Presentations

[edit Notes on L11a426's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,5,15,6 X20,11,21,12 X22,17,11,18 X16,21,17,22 X10,13,5,14 X8,20,9,19 X18,8,19,7 X2,9,3,10 X4,16,1,15
Gauss code {1, -10, 2, -11}, {3, -1, 9, -8, 10, -7}, {4, -2, 7, -3, 11, -6, 5, -9, 8, -4, 6, -5}
A Braid Representative
A Morse Link Presentation L11a426 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^2 w^4-3 u v^2 w^3+4 u v^2 w^2-2 u v^2 w-u v w^4+5 u v w^3-8 u v w^2+6 u v w-u v-u w^3+3 u w^2-3 u w+u-v^2 w^4+3 v^2 w^3-3 v^2 w^2+v^2 w+v w^4-6 v w^3+8 v w^2-5 v w+v+2 w^3-4 w^2+3 w-1}{\sqrt{u} v w^2} (db)
Jones polynomial - q^{-8} +4 q^{-7} -10 q^{-6} +16 q^{-5} -22 q^{-4} +q^3+26 q^{-3} -4 q^2-24 q^{-2} +10 q+23 q^{-1} -15 (db)
Signature -2 (db)
HOMFLY-PT polynomial -a^2 z^8+2 a^4 z^6-5 a^2 z^6+z^6-a^6 z^4+7 a^4 z^4-11 a^2 z^4+3 z^4-2 a^6 z^2+10 a^4 z^2-13 a^2 z^2+4 z^2-2 a^6+8 a^4-10 a^2+4-a^6 z^{-2} +4 a^4 z^{-2} -5 a^2 z^{-2} +2 z^{-2} (db)
Kauffman polynomial a^9 z^5-a^9 z^3+4 a^8 z^6-4 a^8 z^4+a^8 z^2+9 a^7 z^7-14 a^7 z^5+11 a^7 z^3-5 a^7 z+a^7 z^{-1} +11 a^6 z^8-15 a^6 z^6+9 a^6 z^4-5 a^6 z^2-a^6 z^{-2} +3 a^6+7 a^5 z^9+7 a^5 z^7-37 a^5 z^5+38 a^5 z^3-18 a^5 z+5 a^5 z^{-1} +2 a^4 z^{10}+22 a^4 z^8-56 a^4 z^6+51 a^4 z^4-28 a^4 z^2-4 a^4 z^{-2} +12 a^4+14 a^3 z^9-13 a^3 z^7-23 a^3 z^5+36 a^3 z^3-24 a^3 z+9 a^3 z^{-1} +2 a^2 z^{10}+19 a^2 z^8-57 a^2 z^6+z^6 a^{-2} +58 a^2 z^4-2 z^4 a^{-2} -35 a^2 z^2+z^2 a^{-2} -5 a^2 z^{-2} +15 a^2+7 a z^9-7 a z^7+4 z^7 a^{-1} -9 a z^5-8 z^5 a^{-1} +14 a z^3+4 z^3 a^{-1} -11 a z+5 a z^{-1} +8 z^8-19 z^6+18 z^4-12 z^2-2 z^{-2} +7 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
7           11
5          3 -3
3         71 6
1        94  -5
-1       146   8
-3      1211    -1
-5     1412     2
-7    913      4
-9   713       -6
-11  39        6
-13 17         -6
-15 3          3
-171           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-3 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-2 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{14}
r=-1 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{14}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.